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Lattice

Ordered arrangement of points in space
Periodicity

&

Repeating Unit

Symmetry

Repeating Unit

A 2-D Lattice
Th i t f i t i id ti l ith th t f ll thThe environment of  any one point is identical with that of all others.



Lattice and Unit Cell August Bravais
(1811- 1863)( )

ααββ
γγ

T = ua + vb + wcT = ua + vb + wc

γγ

A 3-D Lattice
There are fourteen possible 3-D point lattices [Symmetry + Centering]



7 Crystal Systems and the 14 Bravais Lattices

Crystal 
System

Lattice Symbol Restrictions

ββy
Triclinic P a≠ b ≠ c

α ≠ β ≠ γ
Monoclinic P, C a ≠ b ≠ c

ααββ
γγ

, ≠ ≠
α= γ =90, β ≠ 90

Orthorhombic P, C, I, F a ≠ b ≠ c
α = β = γ= 90

Tetragonal P, I a = b ≠ c
α = β = γ =90

Rhombohedral R a = b= c
α = β = γ < 120, ≠ 90

Hexagonal H a = b ≠ c,
α = β = 90, γ ≠ 120

Cubic P, F (fcc), I (bcc) a = b = c
α = β = γ = 90



2D Lattice + Motif → 2D “Crystal”

A Molecular
Motif

A 2-D “Crystal”y



Lattice + Molecular Motif → Molecular Crystal

T = ua + vb + wcT = ua + vb + wc

Infinite 3D periodic array
Here the molecules reside on vertices of the unit cell – Special Positions 



Positions of Atoms in Unit Cell 
– Fractional Coordinates

The atomic coordinates of a crystal structure are usually expressed as 
fractions of the a, b and c unit cell vectors.

Z x =  X/a on the crystallographic X axis
y = Y/b on the crystallographic Y axis
z = Z/c on the crystallographic Z axis( )

Y
X

N
½½ The lengths of a b c define the lattice 

parameters a, b and c of the unit cell. 

z  Z/c on the crystallographic Z axis(x,y,z)

X

Vector presentation of a general position ( ) cbacbar zyxy
x

++=
⎟
⎟
⎟
⎞

⎜
⎜
⎜
⎛

=
z ⎟

⎠
⎜
⎝

An atom N with fractional coordinates 0.5, 0.5, 0 would  lie at the center 
of ab plane (½ ½ 0) also called C-center positionof ab plane (½, ½, 0), also called C-center position.



3D-Lattice + Molecular Motif → Molecular Crystal

The molecules reside on general positions (x y z)



Equivalent Positions

Lattice points are related to each other by symmetry. 

Example - A primitive cell contains only one lattice point.Example A primitive cell contains only one lattice  point.

(1,1,1)

(0 0 0)

T = ua + vb + wcT = ua + vb + wc cbar zyx ++=

Translational symmetry

(0,0,0)

(u+x, v+ y, w+z)

(x, y, z) General position

Translational symmetry

Lattice points (0,0,0) (1,0,0) (0,1,0) (0,0,1) (1,1,0) (1,0,1) (0,1,1) (1,1,1) 
are all equivalent. 

(u x, v  y, w z)

Each of the vertices is shared by eight adjacent unit cells 

Space group symmetry ( 230 space groups)
S d S G T i lSymmetry and Space Group Tutorial,  
Jerry P. Jasinski and Bruce M. Foxman, Brandeis Univ. 2007
http://people.brandeis.edu/~foxman1/teaching/indexpr.html



Crystallographic Planes and Miller Indices 

Miller indices (hkl), defined by three lattice points, are used to identify 
planes of atoms within a crystal structure.
The (hkl) plane intercepts a/h, b/k, c/l on crystallographic axes X, Y, Z, 
where h, k, l are relatively prime integers. 

Intercepts
cba

1

Intercepts
lkh

,,

Fractional intercepts  
lkh
1,1,1

1

l
p

lkh

Reciprocals of the 
fractional intercepts 

lkh ,,

h
1 k

p

Miller Indices lkh ,,
(prime integers)(p g )



Examples of Crystallographic Planes

1. A plane intersects the three crystallographic
axes at (1 0 0), (0 1 0) and (0 0 1) has the

2 The plane intercepts the x axis at a/2 the y axis

axes at  (1 0 0), (0 1 0) and (0 0 1) has the 
miller indices (111) (111)

2.    The plane intercepts the x-axis at a/2, the y-axis 
at b/1 and the z-axis at c/1.

Fractional intercepts 111

(211)1

Fractional intercepts 1,1,
2

Reciprocals of the 
fractional intercepts 

1,1,2
2

p

Miller Indices )211(
(prime integers)

Reciprocals of these intercepts are the corresponding miller indices



Examples of Crystallographic Planes

3.  Lattice planes parallel to unit cell axes

(hkl)(hkl)
a set of parallel planes

{hkl}

(100)

b1I

)001(

cba ∞∞2

a set of all symmetry-
equivalent  planes

cba ∞∞ ,,1

∞∞,,1

Intercepts :

Fractional intercepts : 

cba ∞∞ ,,2

∞∞,,2

∞∞
1,1,1

)001(Miller Indices

Reciprocals of the 
fractional intercepts ∞∞

1,1,
2
1

)001()001(Miller Indices
(prime integers)

)001(



Examples of Crystallographic Planes

Intercepts cba 211 cba 13∞

4. A B
Intercepts 

‘Fractional’ intercepts  

cba 2,1,1

2,1,1
1

cba 1,3,∞

1,3,0

1
2
1,1,1

Miller Indices )122(

Reciprocals of the 
fractional intercepts 1,

3
1,0

)310(

(221)

Miller Indices )122(
(prime integers)

)310(

5.

(013)

(012)(011)



Unit Cell Volume

a×bThe vector product of a and b is ⊥
to both a and b, and

c

b

γsinab=×ba
which equals the area of ab plane.

The scalar triple product of (a×b) 
and c equals the area times height of 
the parallelepiped, i.e. the volume of 

γ

a
cba ⋅×= )(V

p p p
the cell.

2
1

2 coscos acaba βγ
cbabacacb ⋅×=⋅×=⋅×= )()()(V

2

2

coscos
coscos
coscos

ccbca
bcbba
acaba

αβ
αγ
βγ

=

2
1

)coscoscos2coscoscos1( 222 γβαγβα +−−−= abcV



The Reciprocal Lattice

The translations of direct lattice by the two conditions:

0bcaccbabcaba ****** 0=⋅=⋅=⋅=⋅=⋅=⋅ bcaccbabcaba

1=⋅=⋅=⋅ ccbbaa ***

b

c
c*

b*
planebc)(⊥*a

1=== ccbbaa

b
planeca)(⊥*b

lb)(⊥*

a* a
planeab)(⊥c



The Reciprocal Lattice – Unit  Cell  Parameters

Reciprocal lattice parameters a* b* and c*. 

a* is normal to the (bc) plane let a* = p(b × c) where p is a constanta* is normal to the (bc) plane, let  a* = p(b × c), where p is a constant.

Multiply both sides by a: 

a*·a = p(b × c) ·a = pV,  

where V is the volume of the unit cell. b

c
c*

b*
1 = pV =>  p = 1/V

b

V
cba ×

=*

ac× b

aa*

V
acb ×

=*

V
bac ×

=*Similarly,



Reciprocal Vector 
– Direction to (hkl) Plane( )

Reciprocal vector **** cbar lkh ++=

P i f i l

c*
b*

(hkl)

(a) r* is normal to the family of lattice planes (hkl).

V t

Properties of reciprocal vector

a*

N
l
1 C

Vectors
AO = a/h
BO = b/k
CO = c/l

BA = b/k - a/h
CA = c/l - a/h
CB = c/l b/k N

k
1

BCO = c/l CB = c/l - b/k

( ) ( )
0011

//****

=++−=
−⋅++=⋅ hklkhBA abcbar

h
1A

0011 ++
0** =⋅=⋅ CBCA rr

Since r* is perpendicular to two lines in the (hkl) 
plane, it is normal to the plane. |r*| = ??



Reciprocal Vector – Relation to d-Spacing

(b) 
d

r 1* =

The distance between two successive lattice planes in the (hkl) family 
equals the projection of the vector a/h on the direction of the plane normal, 
which has the same direction as r*.

1 C
*

*

⋅=
rh

d ra
o90ANO =∠

1
l
1

B

C

N
d

)(

*

*

*** ++
⋅=

h
r

lkh
h

aa

cbaa

1
k
1

A

d00* ++⋅=
r

h
h

aa

1d ** 1 d
h*r

d = d
d

r ==or



Relation of Direct and Reciprocal Space Vectors

Vector presentation of a lattice position

cbar ++

where (x y z) are fractional coordinates in direct space  

cbar zyx ++=

zyxlkh ++⋅++=⋅ )()( **** cbacbarr

(c) The product relation.  The scalar product of r*·r = hx + ky + lz

lzkyhx
lzkyhx

++=
⋅++++⋅++++⋅= )00(0000 *** ccbbaa ）（）（

lzkyhx ++=⋅ xh

In structure factor calculation, the dot product r*·r can be replaced with h·x



X-ray and Neutron Scattering

Diffraction arises from the interaction of matter with waves of X-rays and 
neutrons.

⎟
⎞

⎜
⎛= )(2cos)( ctxft πE

Consider the wave as a function of position x along its direction of 
propagation at time t. At any point on the x-axis:

⎟
⎠

⎜
⎝

−= )(cos)( ctxft
λ

E

Where f is the amplitude, c is 
the velocity of the wave and λe

f

t = 0 x
λ

ν c
=The frequency

the velocity of the wave and λ
is the wave length. 

Am
pl

itu
de

ct

λ
q y

The phase of the wave is related to path length x by               ,  andx
λ
πφ 2

=

A

)2cos()( tft πνφ −=E



Wave Vector in Complex Form
Euler’s theorem

φφφ sincos iei +=

= f cosφ cos( 2πνt) + f sinφ sin( 2πνt)

)2cos()( tft πνφ −=E

= f cosφ cos(-2πνt) + f sinφ sin(-2πνt)
amplitude of 
cosine part

amplitude of 
sine part

φ
B=f sinφ

A=f cosφ

This can also be written in complex form: φφφ sincos ifffei +=

tiiti efefet πνφφπν 2)2()( −−Ε

A f cosφ

iBAfei +=φ
efefet φφ )()( ⋅==Ε

The quantity involves both the amplitude and the phase angle φφife

iBAfe +

φife=f

The  quantity          involves both the amplitude and the phase angle, φ, 
is know as the  atomic form factor 

fe

fef



Combination of Wave Vectors

11111

i
sincos

φφ
φφ

ff
ff
if

if +=

22222 sincos φφ ff if +=

BAF

F

+=

= φ

)(

e
222

iF

A

φ1

F
φ2

fA

N

N

j
jj= ∑

=

φcos
1F

Bφ1

B

fB
N

j
jj= ∑

=

φsin
1

φ

φ2
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φ
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2211

φφ

φφ
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F

ff

ff

efef

+

== A
B

=φtanφ1

21
21

φφ iiF efef +=



Interference of Two Plane Waves

)2( pathi
feF

Δ×
= λ

π

f2 Ff2
F f2 Ff2

2π 4π

4
λ

=Δpath
2
λ

≈Δpath2
πφ =Δ

πφ ≈Δ

For maximum positive interference, 

npath ×=Δ×=Δ π
λ
πφ 22

λnpath=Δ

2

λ
p



The Bragg’s Equation

The path difference between lattice planes (AO + OC) = nλ

Reflection condition from a series of equally spaced planes

For family of (nh nk nl) planes,
dd hkl=

The path difference between lattice planes  (AO  OC)  nλ

λθ nd =sin2

λθ n==+ sinOB2OCAO

S0 S
λθ =)sin(2d

n
d nlnknh =

Bragg’s Equation

λθ nd =sin2

S0 SB

λθ =)sin(2 hkld

Note: In practice we need only
id th 1 l i

θ

θ θ

θ

A C
d

O

consider the n = 1 values, since
higher orders of n for the (hkl)
planes correspond to (nh nk nl)
planes with n = 1.θO p

θsindOCAO ==



Laue Conditions for Diffraction

λ
1

0 == ss
Scattering condition from lattice points

For wave vectors s0 and s each with a magnitude of 
λ0

Path difference for the 
lattice points on a

λλ h
ss

=−⋅=⋅+⋅− )( 0
0

0 ssasasa

0 g

or

In three dimensions ⇒
s0

s
h=−⋅ )( 0ssa

k)(b
h=−⋅ )( 0ssa

Laue a
s0 s

1
0 =s

k=−⋅ )( 0ssb
l=−⋅ )( 0ssc

Equation
O

λ0

s
sa⋅

0

0

s
sa⋅−



Diffraction of an Atom – Scattering Factor

Apply the Laue condition to an atom with fractional coordinates (x,y,z),

)()()( lkhbxhx =−⋅ )( ssa )()()( 0 zlykxhzyx ++=−⋅++ sscba

r
)(* zlykxh ++=⋅rr∴

xhx =−⋅ )( 0ssa
yky =−⋅ )( 0ssb
ylz =−⋅ )( 0ssc

*
0)( rss =−)()( zlykxho ++=−⋅ ssr

s0
s Path difference of lattice point r from origin

*
0

0 )()( rrssrssr ⋅=−⋅=−⋅ λλ

)( lykxh

s0 s
r

*

22 ** ⋅=⋅×= πλ
λ
πφ rrrrThe phase of point  r :

0
0

)()( rrssrr λλ
ss

1
O

*
0)( rss =− )(2 lzkyhx ++= π

)(2i lkhiφ

Scattering Factorλ
1

s0
)(2i)( lzkyhxiefefhklf ++== πφ



Ewald Sphere

Geometrical description of the conditions for diffraction.

The path difference between the scattering waves  from two lattice points 

Point detector

p g p
B and O can be related by a sphere of radius 1/λ

θ
λ

sin2
0

* =−= ssr

s

Point detector

B λθ =sin2 hkld

Conditions for diffraction  [Bragg’s equation]:

s0

r*

2θθ

λθsin2 hkld

21
The modulus of r*

s0

λ
1

2θθ

λ
1O O’ θ

λ
sin21* ==

hkld
r

Minimum d space or highest resolution  = λ/2 p g

Ewald sphere is also called the limiting sphere.



Data Collection with an Area Detector

⎟
⎠
⎞

⎜
⎝
⎛+= −

D
a

d 2
tan2 1

max θθ

a/2⎟
⎠
⎞

⎜
⎝
⎛−=

⎠⎝

−

D
a
D

d 2
tan2

2

1
min θθ

detector
D

Beam

λ

1/Rmax

1/Rmin
crystal Beam

stop max
max sin2

λ
θ

λ

=

=

R

R

Rmax Resolution at maxium 2θ
min

min sin2 θ
=R



Detector Coverage
D = 60 mm D = 210 mmD  60 mm

⎟
⎠
⎞

⎜
⎝
⎛+= −

D
a

d 2
tan2 1

max θθ

D  210 mm

⎟
⎠
⎞

⎜
⎝
⎛−=

⎠⎝

−

D
a
D

d 2
tan2

2

1
min θθ

D

λ
Beam

max
max sin2

λ
θ

λ

=

=

R

R
1/Rmax

1/Rmin
crystal Beam

stop

min
min sin2 θ

=R

Rmax Resolution at maxium 2θ



Resolution

The minimum plane spacing (d) given by Bragg's law for a particular set of 
diffraction intensities.

Higher resolution  means 
smaller d-spacing
b h bili l i i hb i f ibetter the ability to resolving neighbouring features in an 
electron density map.

Example: Resolution for a crystal that diffracts to maximum 2θ = 50º from

o
o

71070 Αλ

Example: Resolution for a crystal that diffracts to maximum 2θ = 50º from 
Mo Kα radiation (λ =0.7107 A) 

o
max

max 84.0
25sin2

7107.0
sin2

Α=
×

Α
==

θ
λR

The resolution improves with an increase in the maximum value of sinθ/λ (Å-1)The resolution improves with an increase in the maximum value of sinθ/λ (Å ).



X-Ray and Neutron Scattering Amplitude

X- Ray    Solid Line 

or

y
Neutron Circle

56Fe
12Cer

in
g 

Fa
ct

o

2H12C

Sc
at

te 2H

1H55Mn

λ
θsin



Micro-Crystal and Charge Density Setups at APS

APEXII d 2θ S l ( 20 )

ChemMatCARS-15ID-B
APEXII detector 2θ range              
~ 25 to -110 deg

- Readout (8x8 binning) ~ 1 s           
( l t d)

Sample (~20μm)

(uncorrelated)

- Readout (4x4 binning) ~ 1.5 s 
(uncorrelated)

LHe cryostat T = 15-70 K

Beam size 80 to 500 μmBeam size 80 to 500 μm 

Energy range ~6 to 32 KeV 

Hi h t ti l l ti 2 1 Å 1 (0 24 Å)Highest spatial resolution   2.1 Å-1 (0.24 Å)



TOF Neutron Scattering

L
t

m
h

mv
h

⋅==λ
Lmmv

where h is the Plank constant, m
and v are the mass and velocity of
neutron, L is the neutron flight
path length and t is the time of
flight.

Thermal neutrons (λ =1.8 Å) travel at 
the speed of 2200 m/s.

SNS electronics can determine both 
the time and position of each of the 
pulsed neutron from diffraction at the 
d t t itdetector positon.



TOPAZ  Single Crystal Diffractometer at SNS

Neutron time of flight Laue technique
3-D Reciprocal space mapping (x, y, λ)
Optimized for high throughput on samples with 
unit cell sizes ~ 50 Å

Pulsed Neutroncrystal
1

Pulsed Neutroncrystal
maxλ

min

1
λ



30
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si
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m
3 41.3 kg/m3
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D
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s

H2 Adsorption
H2 Desorption

0 20 40 60 80 100
0A

ds

Pressure / bars



Macromolecular Neutron Diffractometer (MaNDi)

•Large solid angle 
detector coveragedetector coverage

•Reduced crystal size 
requirement ~0.1mm3 

and belowa d be ow

•Reduced data 
collection time (1 day 
to 1 Week)

•Increased resolution 
1.5-2.0 Å(Dmin)

• Larger unit cell• Larger unit cell 
repeats 50-300 Å

(Online 2012)



Structure Factor F(hkl)

For a lattice point with coordinate (xj, yj, zj), the phase difference 
relative to the origin is

( ) ( )
)(2

22 ****

jjj

jjjjj

lzkyhx

zyxlkh

++=

++⋅++=⋅=

π

ππφ cbacbarr

The atomic structure factor atomic structure factor fj (hkl) represents the wave resulted from 

)(2i)( jjji lzkyhxi
jjj efefhklf ++== πφ

diffraction of atom j.

For N atoms in the unit cell

∑∑∑ ++===
N

j

lzkyhxi
j

N

j
j

N

j
j

jjjj efefhklfhklF )(2i)()( πφ



The Effect of Lattice Centering on F(hkl)

Example      C-face centered lattice
For each point (x,y,z) there must be another at (½+x, ½+y, z).

{ } { }[ ]

⎤⎡ ⎞⎛ ⎫⎧

+++++++= ∑ )(2exp)(2exp)(

2/

2
1

2
1

2/

khlzkyhxilzkyhxifhklF

N

jjjjjj

N

j
j ππ

For each point (x,y,z) there must be another at (½ x, ½ y, z). 

{ } ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎭
⎬
⎫

⎩
⎨
⎧ +

+++= ∑ 2
2exp1)(2exp

2/ khilzkyhxif jjj

N

j
j ππ

⎞⎛ ⎫⎧ + kh

= 2 for h + k = 2n

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎭
⎬
⎫

⎩
⎨
⎧ +

+
2

2exp1 khiπThe last factor                                    can only has two values (½, ½, 0)

{ }[ ])(2exp2)(
2/

jjj

N

j lzkyhxifhklF ++= ∑ π
Reflection ConditionsReflection Conditions

Systematic absencesSystematic absences

The systematic absences allow lattice centering glide planes and screws

 2    for h + k  2n

= 0    for h + k = 2n + 1

{ }[ ])(2exp2)( jjj
j

j lzkyhxifhklF ++∑ π

0)( =hklF
The systematic absences allow lattice centering glide planes and screws 
axes to be detected. 



Reflection  Conditions for Centered Lattices

Reflection Condition Centering Type Symbol

N P i iti PNone Primitive P

h + k = 2n C-face centered C

k + l = 2n A-face centered A

h + k + l = 2n B-face centered B

h + k + l = 2n Body centered I

h k h l d k l ll f dh + k, h + l and k + l = 2n 
or: h, k, l all odd or all even 
(‘unmixed’)

All-face centered
F



Diffraction Intensity 

( ) ( ) ( )*hklhklhkl FFI ∝

The phase is not an observable quantity
Information on phase φ is lost.

Intensity data 

( ) ( ) ( )
( ) ( ) ( ) 2i-i hklehklehkl

hklhkl hkl

FFF

FFIobserved

=⋅=

⋅∝
φφ

( ) ( ) 2)( hklFhklKChklI ( ) ( )0)( hklFhklKChklIobserved =

where K is a scale factor, C(hkl) are corrections: Lorentz, polarization(X-ray), 
and absorption corrections. p
In practice, the observed intensity data are processed and corrected for C(hkl) 
and then exported to programs for structure solution and refinement.

⎞⎛ 2i θ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑ 2

2
2 sin2exp

λ
θBfKhklI io

Correction for thermal motion. B is 
the atomic displacement parameter.

B = 8π2 U (Å2) U is the square mean shift of the 
atom from equilibrium position.



Friedel’s Law

{ }

{ }∑

∑ +++++=
i

iiiiiii

lkhilkhflkhF

lzkyhxilzkyhxfhklF

)](2i [)](2[)(

)](2sin[)](2cos[)( ππ

{ }

{ }∑

∑
++−++=

++−+++−=

i
iiiiiii

i
iiiiiii

lzkyhxilzkyhxf

lzkyhxilzkyhxflkhF

)](2sin[)](2cos[

)](2sin[)](2cos[)(

ππ

ππ

)(hklF

2*2

φ
−φ

2*2 |)(|)()(|)(| lkhFhklFhklFhklFI ==∝ )( lkhF

The diffraction by itself introduce a(n) (apparent) center of symmetryThe diffraction by itself introduce a(n) (apparent) center of symmetry.

|)(||)(| lkhFhklF = )()( hklhkl φφ −=



Anomalous Scattering 

Anomalous scattering resulted from absorption  and re-emission of X-rays.
. 
The form factor of an anomalously scattering atom

)(hklF f”

(λ) f f ’(λ) if ”(λ)

The form factor of an anomalously scattering atom 
is wavelength dependent

φ
−φ

F (λ) = fo + f ’(λ) + if ”(λ) 

Friedel's Law is broken whenever there is anomalous )( lkhF f”
Friedel s Law is broken whenever there is anomalous 
scattering because the imaginary term f”  is always positive. 

|)(||)(| lkhFhklF |)(||)(| lkhFhklF ≠



Laue Symmetry

⎞⎛ 001

Describe the relationships between symmetry equivalent 
reflections. 
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The Laue Symmetry displayed by a diffraction pattern is the point-group 
symmetry of the crystal with the addition of a center of symmetry (if not y y y y y (
already present). 



Point Groups and Laue Classes

Crystal 
Systems

Point Groups Laue 
Classes

Lattice 
Point 
G

Non-centrosymmetric Centrosymmetric
Groups

y y

Triclinic 1             
Monoclinic 2 m 2/m 2/m 2/m

_
1

_
1

_
1

Orthorhombic 222 mm2 mmm mmm mmm
Tetragonal 4 4/m 4/m 4/m

422 4mm 2m 4/mmm 4/mmm 4/mmm

_
4

_
4422 4mm,    2m 4/mmm 4/mmm 4/mmm

Trigonal 3 m
32 3m m m m

_
3_
3

_
3_
3

_
3_
3

4

_
Hexagonal 6 6/m 6/m 6/mmm

622 6mm,    2m 6/mmm 6/mmm
Cubic 23 m m m   m

_

3
_

3
_

3

_
6

6

432 3m m m m m m m
3
_

3
3
_

3
_

3
3

_
4

Overview of 32 point groups



Classification of crystal lattices

CrystalCrystal
LatticeLattice

4 triad axes? yes Cubic Cubic 
LatticeLattice

No tetrad axis? yes Tetragonal Tetragonal 
No

hexad axis?hexad axis? yes Hexagonal Hexagonal 
No

triad axis? yes TrigonalTrigonal
No

3 diad axes? yes Orthorhombic Orthorhombic 
No diad axis     or No

mirror plan    ? yes Monoclinic Monoclinic 
No

TriclinicTriclinicTriclinicTriclinic



Unique Data – Asymmetric Unit

Triclinic

( )
)()(

)(

lkhIklhI

lkhIhklI
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=
LawsFriedel'
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lkhIlhkI
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lkhIklhI

=

=

=

• Half of the points in within the limiting sphere represent independent 

)()(

observations.

• Laue Symmetry 1 ∞→∞−
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k
h 0

y y 1
∞→∞−l



Unique Data – Asymmetric Unit

Monoclinic
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2CLawsFriedel'
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Unique Data – Asymmetric Unit

Orthorhombic
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Crystal Symmetry and Space Groups

Lattice Centering

Symmetry of the Primitive Unit Cell



Symmetry Operations

Rotations                     1 2 3 4 6
Rotation/translations 2 3 3 65 ChiralRotation/translations   21 31 32

41 42 43

61 62 63 64 65

(screw axes)
65 Chiral

Space Groups

230 
Space GroupsInversions, 

mirrors,                        m
6,4,3,1

mirror/translations       a, b, c, n, d,                          
(glide planes)



Symbol for Symmetry Elements 

International Tables for Crystallography, 
Volume A Table 1 4 5 p 9 (2002)Volume A, Table 1.4.5, p. 9 (2002)



1.1 NoPSpace Group P1

a

+ + ),,1( zyx+),,( zyx
c

),,1( zyx+)( y

++)1,,( zyx + )1,,1( zyx ++

),,( zyxZ=1;
Enantiomorphous),,( zyxZ 1;

Non-centrosymmetric

Jerry P. Jasinski and Bruce M. Foxman, Brandeis Univ. 2007



Space Group P 1 1.1 NoP

a

+ + ),,1( zyx+),,( zyx

Reference atomc

),,( yy

An equivalent position
Prefix

Gridline for c/2 

++)1,,( zyx + )1,,1( zyx ++
Gridline for a/2

)(Z 1
Number of equivalent 
positions contained 

In this area we'll list the 
set of equivalent points 

Gridline for a/2

),,( zyxZ=1;
p
within one unit cell belonging to the general 

position

Jerry P. Jasinski and Bruce M. Foxman, Brandeis Univ. 2007



2.1 NoPSpace Group P 1

a

+

,- ,-

+
Symbol:     = 1-bar = 

_
1

c

,-,-

inversion center

+ +

Non-enantiomorphous

,,

Z=2; ),,( zyx),,( zyx

Non-enantiomorphous

Jerry P. Jasinski and Bruce M. Foxman, Brandeis Univ. 2007



Space Group P 1

ITA  p115



21 Screw Axis 

21 is a 180° (two-fold) rotation followed by
a translation of ½ of the lattice vector. This c

b

),1,( zyx +
operation would take a point from (x,y,z) to
(-x, ½+y,-z) for a 21 screw axis along b.

a

),21,( zyx +

Symbol: 21 || page 
is a half-arrow

),21,( zyx +

+

-

b = 0 b = 1
0.5

),,( zyx

2 Screw Axis along b

In the diagram on the following page, the 
21 axis is perpendicular to the plane of the 
screen, we’ll use the symbol

Jerry P. Jasinski and Bruce M. Foxman, Brandeis Univ. 2007

21 Screw Axis along b, y



4.21 NoPSpace Group P 21

+½+½

a

c
++

c

+½ +½

Enantiomorphous
+ +

Enantiomorphous

Non-centrosymmetric

),21,( zyx +Z=2; ),,( zyx

Jerry P. Jasinski and Bruce M. Foxman, Brandeis Univ. 2007



Space Group P 21

ITA  p121



Space Groups Determination

Unit Cell Symmetry and Dimensions
Intensity StatisticsIntensity Statistics

Systematic Absences
Space Group Symmetry

International Tables for Crystallography, Vol. A, p46.



Intensity Statistics – Wilson Plot

Estimation of temperature factor B ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑ 2

2
2 sin2exp

λ
θBfKhklI io

⎠⎝
( )
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⎞
⎜⎜
⎝

⎛
−=

∑ 2

2

2

sin2exp
λ

θBK
f

hklI

i

o

X

( )
2

2

2

sin2lnln
λ

θBK
f

hklIY o −=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

∑

X

λfi ⎥⎦⎢⎣ ∑

( )
⎥
⎤

⎢
⎡

l hklI 2sin θ Intercept = lnK 
Linear lot of 

( )
⎥
⎥
⎦⎢

⎢
⎣ ∑ 2ln

i

o

f
hklI

versus 2λ Slope = -2B

Arai, S. Chatake, T. Suzuki, N. Mizunob, H. and Niimura, N. Acta Cryst. (2004). D60, 1032.
WILSON, A. J. C. Nature (London), (1942). 150, 151.



Intensity Statistics - E Value

F

Normalized structure factors Plot of the probability distribution of |E|

)

0.8

1.0
centric
acentric

2F

F
E h

h =

P(
|E

|)
0.4

0.6

0 1 2 3
0.0

0.2

CentrosymmetricCentrosymmetric NonNon--centrosymmetriccentrosymmetric
12 −E

|E|

0.968 0.736



Structure Solution - Fourier Synthesis

Scattering density

∑ iZYX )2(1)( HF

Missing phase information(electron or neutron) 

∑∑∑

∑
∞

++−=

⋅=

lZkYhXihkli

H
jH

eehklF

i
V

ZYX

)(2)()(1

)2exp(),,(

πφ

πρ rHF

electron or neutron structure factor X Y Z – points in unit cell

∑∑∑
∞−

h k lV
)(

electron or neutron
density

structure factor X,Y,Z points in unit cell

Fourier synthesis will give the scattering density , and hence the crystal 
t tstructure

The Phase Problem
Need the full wave equations |F(hkl)|eiφ for each reflection to do the reverseNeed the full wave equations |F(hkl)|e for each reflection to do the reverse  
Fourier transform. 



Structure Analysis

Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122



Structure Refinement

Merge of reflection data

SHELXL always refines against F2 [measured intensities Io]

Merge of reflection data

Quality of the 
diff i d

Agreement between 
symmetry equivalent reflections( ) [ ]∑∑ −= 222

int /mean ooo FFFR

( )[ ] [ ]∑∑= 22 /i FFR σ

R-indices and weight
diffraction data

( )[ ] [ ]∑∑ / oosigma FFR σ

( )[ ] ( )[ ]{ }2
122222 /2 ∑∑ −= oco FwFFwwR

Quality of the
structure model

( )[ ] ( )[ ]{ }∑∑ oco

∑∑ −= oco FFFR /1

( ) ( )[ ]bPPF 222/1
where P is [ 2Fc

2 + Max(Fo
2,0) ] / 3 

structure model( ) ( )[ ]bPaPFw o ++= 222/1 σ

( )( ) ( ){ }2
1

/222∑ −−== pnFFwSGooF co

where n is the number of reflections and p
is the total number of parameters

( )( ){ }∑



Refinement Procedure

Atom x, y ,z
& U

Add H-atoms
& Uiso

Diff Weighing Difference 
Fourier

g g
Scheme

Atomic 
Peaks

Converged

Atom x, y ,z
Graph - ORTEP CIF for 

PublicationAtom x, y ,z
& Uaniso



Structure Validation

checkCIF Program

http://checkcif.iucr.org 

ORNL



Problem Address by checkCIF 

Data completeness and resolution

Missing or inadequate absorption correctionMissing or inadequate absorption correction

Missed higher space group symmetry

Absolute structure

Indications of a poor structure

Solvent accessible voids in the structure

Population/occupancy parameters

Displacement parameters

Treatment of H atoms

etc. 



_refine_ls_hydrogen_treatment

Treatment of hydrogen atoms in the least-squares refinement. 

refall refined all H-atom parameters 
f f d d lrefxyz refined H-atom coordinates only 

refU refined H-atom U's only 
noref no refinement of H-atom parameters 
constr H atom parameters constrainedconstr H-atom parameters constrained 
mixed some constrained, some independent 
undef H-atom parameters not defined 



Science at TOPAZ
Single Molecule Magnets: 
Supramolecular Dimers of Mn4 [[Mn4Pr]2·MeCN  (NA3)]: Example 

Yb14MnSb11
Ferromagnet regarded as a rare example of an 
underscreened Kondo lattice. (TC = 53 K) 
T t l ith I4 / dof exchange-biased Quantum Tunnelling of Magnetization Tetragonal with space group I41/acd

1 Mn atom
4 inequivalent Sb atoms

Sb (2) involved in Mn-Sb tetrahedra

maximum entropy magnetization density reconstruction reveals the maximum entropy magnetization density reconstruction reveals the 

Wernsdorfer, Christou, et al. Nature
2002 416 406

Projection of the spin density in Projection of the spin density in 
YbYb1414MnSbMnSb11 11 along the along the cc--axis.axis.

py g ypy g y
presence of a magnetic moment on the Sb site with opposite sign with presence of a magnetic moment on the Sb site with opposite sign with 
respect to the Mn momentrespect to the Mn moment

2002, 416, 406

Garlea, et al. ACNS 2005, Phensant Run, IL. 
Diffuse Scattering:
Structure modulations in Benzil exhibit diffuse 
scattering patterns

Terminal hydrogen or water on the Pt in the  Late-Transition Metal-Oxo Complex, O=Pt(H2O)L2, L = 
[PW9O34]9-

Interesting catalyst
-> Large unit cell [29x32x38]

-> High H content 

-> Disordered lattice water

+ H + H

Welberry et al., J. Appl. Cryst., 2003
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