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Fuels and chemicals from cellulosic biomass
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Biomass consists of cellulose, hemicellulose and lignin
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The crystallinity of cellulose and its inaccessibility make it difficult to break down into fermentable sugars




A future Iarge-scale, cellulosic ethanol pl’OdUCtiOﬂ faC|I|ty (1) Biomass from trees, grasses, or agricultural wastes is harvested and
delivered to the biorefinery. (2) Biomass is ground into small, uniform particles. Thermal or chemical pretreatment separates cellulose, a tough polymer of tightly bound
sugar chains, from other biomass e

|aIs and opens up the cellulose surface to enzymatic attack. (3) A mix of enzymes is added to break down cellulose into simple

g sugars from cellulose and other biomass carbohydrates. (5) Ethanol is separated from water and other components
of the fermentation broth and purified through distillation.

sugars. (4) Microbes pro4
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U.S. Department of Energy Genome Programs website http://genomics.energy.gov



Problem: Cellulosic biomass pretreatment is expensive and
Inefficient

-We are investigating a variety of pretreatments of biomass in order /D\
to improve its catalytic conversion to various products.

-These include ionic liquids, thermochemical, mild acid, alkali
mercerization, AFEX, and biological and oxidative pretreatment
processes.

-Techniques used include time-resolved and multilength scale
microscopy, diffraction, mass spec and theoretical approaches

Advantages of AFEX over other processes:

- High Catalyst Recovery (>98%)

- Minimal Water Usage (3-20 fold lower)

- Minimal Biological Inhibitors Formed (e.g. furans)
- Flexible Feedstock (e.g. animal feed)

We are using neutron and crystallorgaphy, modeling, and enzymatic
studies to understand structural changes that occur during 1) AFEX
pretreatment 2) how catalysis depends on these changes.

These insights are guiding the development of a new
optimized process in collaboration with GLBRC
(Shishir Chundawat).
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Team and Capabilities
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< biofuels. Lignocellulosic biomass is the inedible fibrous material derived from plant cell
walls, and its holocellulose component is composed of natural sugars that can be

Proteomics | used for pradu?ing various fuels 5u§h as ethanol and huta:le The problem is the lack :

of energy-efficient and cost-effective processes for breaking up the plant cell wal

and releasing these sugars

Collaborations K | _[J

5

"CNLS Workshop"

5

5

Operated by Los Alamos National Security, LLC for NNSA 7 YR ‘DDSC
VAT




Providing the First Atomistic Structures of Cellulose
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Improving AFEX Pretreatment

Results from neutron and X-ray crystallography and theory have lead to optimized conditions that improve
hydrolysis of AFEX pretreated biomass and are leading to theoretical studies to create better cellulases
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Optimizing AFEX to incorporate conversion to cellulose Il

Enzyme hydrolysis assays demonstrate greater efficiency of AFEX-III

Comparing pretreatments

Developing biocatalyst cocktails that are tailored to AFEX-III
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Surface chains in cellulose Il have similar conformations to solvated
oligomers
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Surface chains in cellulose lll are hydrated like solvated oligomers
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AFEX-1Il (NH; at 25°C for 2 hrs) conversion of corn stover
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Summary

-We have provided atomistic details of the structure of cellulose (and biomass) and how it changes
during pretreatment.

-Cellulose chains on the surface of cellulose fibrils have memory of their crystalline cores.
-Cellulose chains on the surface of cellulose Il fibrils are similar to those in solution.
-An optimized AFEX-III pretreatment process significantly increases the conversion of corn stover.

-Co-optimization of substrate pretreatment and enzyme cocktails is essential.
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Problem: Xylose from cellulosic biomass cannot be efficiently
fermented to ethanol

-Cost-effective and sustainable production of biofuels from cellulosic
biomass will require the use of all sugars

o Gheniic
L 26%
-Several different Metabolic Engineering and Systems Biology approaches 30%
are being taken to enable xylose fermenation in S. cerevisiae. - (Celllu]ose]

glucose
-We are determining the mechanism of Xylose Isomerase (XI) using
neutron crystallography and quantum enzymology and reengineering for
optimized catalysis in S. cerevisiae.

Pentose Metabolism Path
(Xylose)

Xylose

Xylose isomerase

Xylulose

Entner-Doudoroff Pathway
Metabolism Path (Glucose)

Glucose
ATP
ADP

» Glucose-6-P

-bx;:l’ulose-s—f-" “* Ribulose-5-P +» Ribos:—S-P

I
Transketolase
|

+ v
Sedoheptulose-7-P Glyceraldehyde-3-P
4 L

T
Transaldolase
|

* Fructose-6-P }

v
H Erythrose-4-P Frustose-6-P
§ |Transkelolase [

Glyceraldehyde-3-P

» Los Alamos
NATIONAL LABORATORY
EST.1943

Gluconolactone-6-P

6-P-Gluconate

2-Keto-3-deoxy-6-P-gluconate

i 3 Glyceraldehyde-3-P

1,3-P-Glycerate

ADP

ATP
3-P-Glycerate

2-P-Glycerate
ADP ATP
Phosphoenolpyruvate —® Pyruvate

Acetaldehyde + CO;

Ethanol

Microbes ferment
sugars 10 ethanol,
which is then
separated from the
mix of ethanol,
water, microbes,
and residue and
purified through
distillation.

Operated by Los Alamos National Security, LLC for NNSA



Xylose Isomerase has been studied extensively by X-ray
crystallography but its catalysis is still not understood
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any proposed mechanisms are consistent with X-ray structures but differ in the movement of H.
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Snapshot of different stages of the reaction reveal the possible
movement of H during catalysis

Katz et al. PNAS 2006; Kovalevsky et al., Biochem, 2008; Kovalevsky et al. Structure 2010
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Quantum Enzymology (QuE) studies
of xylose isomerase

Neutron crystallography has provided snapshot of different stages of the reaction, revealing
the possible movement of H during catalysis.

However, to fully characterize the reaction pathways, transition states, and energy barriers
that connect these different stages a Quantum Mechanics approach is required. Convention
QM/MM boundary errors, don’t work.

QUuUE combines neutron crystallography with
unigue LANL quantum chemistry algorithms to
model of reactions catalyzed by enzymes.

Powerful new approach for

-understanding and predicting enzyme mechanism
-in silico mutagenesis

-active site engineering.
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Re-engineering Xylose Isomerase for lower pH and better
K Xylose/Kxylitol using results from PCS

Initial Goals: =

1. Redesign M1 site to prevent protonation and metal ejection at low pH |
2. Lower pK, of selected residues to enhance ring opening at low pH PETCK4-X1 T
3. Reduce K, by optimizing water template for cyclic sugar ‘

4. Increase K, for xylose and increase K; for xylitol by careful optimization of
transition state binding pocket using QUE.

5. Introduce improved xylA into S. Cerevisiae for xylose utilization

Progress:
1. Expression system (pETCk4) designed, xylA with HisTAG has been expressed.
2. Easily purified and crystallized (library of ~100 clone generated).

3. Bioanalyzer assay for both glucose and xylose.

4. Using directed evolution we have already lowered pH of activity

5. NDA with Great Lakes Bioenergy Research Center for engineering of
S. Cerevisiae (Trey Sato)
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Summary

-Neutrons are being combined with theory & other experimental capabilities to provide new insights
into biocatalysis

-These insights are guiding the design of improved and new synthetic biocatalysts.
-They are also guiding how biological substrates can be manipulated to enhance biocatalysis.

-These advances help address several major problems for DOE missions in energy and the
enivironment.

The future development of the effective application of neutrons in biocatalysis will depend on several
factors including (just personal opinion!).

1. Easy and simultaneous access to multiple complementary experimental platforms

2. Better access to large-scale modern computing facilities that allow complementary QM (QuE), MD
and AB studies.

3. Anew approach to bioengineering (synthetic biology) that allows co-optimization of different
enzyme properties, and co-optimization of enzyme and microbe performance.

4. Co-optimization of biocatalyst and biosubstrate
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