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Neutron Strain Measurements of Fatigue Crack

Barabash, Gao, et al., Phil. Mag. Lett. 88, 553-565 (2008)
S.Y. Lee, PhD thesis, University of Tennessee (2009)
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• A standard compact tension specimen was 
tested at the Los Alamos Neutron Science 
Center (LANSCE)

• A representative result is shown for a 
HASTELLOY® C-2000® Alloy 
(58wt.%Ni-23wt.%Cr-16wt.%Mo, single-
phase FCC, E=207GPa, Y=393MPa, grain 
size=90 ± 20 μm)

• Lattice strain distribution near the crack tip 
at Pmax and Pmin
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• Using computer simulations and neutron strain measurements, we aim to quantify the dependence of 
surrounding plasticity and fatigue growth behavior on material properties, load pattern, microstructure, etc

• A numerical tractable formulation is by the decoupling of scales = continuum plasticity simulations of 
fatigue behavior + crystal plasticity simulations of microstructure and lattice strains

• Computational modeling of elastic-plastic 
fracture mechanics

• Use continuum plasticity models without a 
reference to the material microstructure

• Lattice strain measured over many grains 
by neutron diffraction

• Comparison between models and 
experiments can enrich our understanding 
of polycrystal plasticity

• An irreversible, hysteretic cohesive interface 
model to allow fatigue crack growth

• Plastic wake can be simulated

A Multiscale View of the Crack Tip Plasticity

Figure as courtesy of Needleman (Brown Univ.)
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Hysteretic, Irreversible Cohesive Zone Model

• Cohesive interface model prescribes a set of traction-separation constitutive law for weak interfaces
• Implemented in ABAQUS User-defined ELement (UEL) subroutine
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• An irreversible, hysteretic formulation will 
introduce a damage mechanism which 
allows the formation of a fatigue crack

unloading stiffness

reloading stiffness

Nguyen et al., Int. J. Fract. 110, 351-369 (2001)
Gao and Bower, Modelling Simul. Mater. Sci. Eng. 12, 453-463 (2004) 

-- free download of ABAQUS UMAT template at http://web.utk.edu/~ygao7/publication.htm



Fatigue Crack Growth and Overload Effects
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• The phenomenological cohesive interface model can faithfully reproduce a steady fatigue crack if
• A plastic wake should emerge and be larger than the plastic zone size
• Crack increment is much smaller than the plastic zone and crack bridging zone
• Crack bridging zone is smaller than the plastic zone

• Although a smooth crack growth is predicted, da/dN is far different from experiments
• Preliminary studies on overload effects show crack growth retardation

Example #1: Mises stress for δf=0.004mm

σmax
(MPa)

δn
(μm)

δa/δn δf/δn E 
(GPa)

ν σmax
(MPa)

800 1 0.4 4 210 0.3 288



Experimental Comparisons – HASTELLOY® C-2000® Alloy

• ε22 (as obtained from lattice strains) will exhibit 
a compressive-to-tensile transition as we traverse 
from the plastic wake to crack front

• However, in order to obtain εhkl distribution, we 
need to use stress history as inputs for a 
polycrystal plastic simulation
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Finite Deformation and Crystal Plasticity

• Multiplicative decomposition

Elastic stretching 
and rotation, and 
rigid body motion

Plastic deformation due to 
crystalline slips
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Lattice Strain Evolution
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• Finite element simulations of Cu polycrystal (cubic 
grains, random orientations)

• Compare to the viscoplastic self-consistent (VPSC) 
model (Clausen et al., Acta Mat. 1998)



Experiments on HASTELLOY® C-22HS® Alloy
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Huang, et al., Met Trans. A 39, 3079-3088 (2008)

• Using elastic constants fitted from σ~εhkl curves, a good 
agreement can be made between neutron measurements 
and crystal plasticity simulations
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Pros
• Connections between continuum residual 

stress analysis and lattice strain evolution
Cons
• Separation of length scales
• Not suitable for short cracks because of 

complicated fatigue mechanisms



• In engineering problems where scales can be separated, it appears that micromechanics 
model is very capable

• VULCAN as a probe on microstructural length scales motivated us to investigate the role of 
grain boundary deformation on lattice strain evolution

Summary


