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Duke 1.2 Duke 1.2 GeVGeV storage ring and booster storage ring and booster 
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Parameters of the Duke FEL ring Parameters of the Duke FEL ring 
Maximum beam energy E max [GeV] 1.2
Injection energy E inj [GeV] 0.27
Stored beam current [mA]
- in single bunch 15-20
- In multibunch 300
Circumference [m] 107.46
Bending radius [m] 2.1
RF frequency [MHz] 178.55
Harmonic number 64

@ Emax = 1.0 GeV:
Beam emittance εx 18
Betatron tunes Qx/ Qy 9.11 / 4.18
Momentum compaction factor 0.0086
Natural chromaticities Cx/ Cy -10.0 / -9.8
Damping times τx,y/ τs [ms] 18.3 / 17.0
Energy loss per turn [KeV] 42
Energy spread 5.8⋅10-4
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Layout  of the booster

Installation site

May 2005

Design layout

August 2002
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Parameters of the boosterParameters of the booster
Single bunch Multibunch

Maximum beam energy E max [GeV] 1.2
Injection energy E inj [GeV] 0.27
Stored beam current [mA] 1.5 - 2 100
Circumference [m] 31.902
Bending radius [m] 2.273
RF frequency [MHz] 178.55
Harmonic number 19
Operation cycle [sec] 1.2 2.5
Energy rise rate [sec] 0.55

@ Emax = 1.2 GeV:
Beam emittance εx, εy 350 / 15
Betatron tunes Qx/ Qy 2.43 / 0.46
Momentum compaction factor 0.153
Maximum βx/ βy/ ηx [m] 9.4 / 25.4 / 1.4
Natural chromaticities Cx/ Cy -1.7 / -3.7
Damping times τx,y/ τs [ms] 3.16 / 1.58
Energy loss per turn [KeV] 80.7
Energy spread 6.8⋅10-4
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3D magnetic simulations of the 
booster bending magnet

Magnetic simulations by MERMAID 3D

•One quadrant

•166×151×151 mesh size

•Stacking factor = 0.980

•E [GeV] =  
0.270, 0.385, 0.500,    
0.625, 0.750, 0.850, 
0,950, 1.000, 1.050, 
1.100, 1.150, 1.200 
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3D magnetic simulations of the 
booster quadrupole magnets

Magnetic simulations by MERMAID 3D

•One quadrant

•3 types of quadrupole: QF1, 
QF2 and QD

•151×201×201 mesh size

•Stacking factor = 0.98

•E [GeV] =  
0.270, 0.385, 0.500,    
0.625, 0.750, 0.850, 
0,950, 1.000, 1.050, 
1.100, 1.150, 1.200 
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3D magnetic simulations of other 
elements

•Septum magnet

Magnetic simulations by MERMAID 3D

•Sextupole

•Y-orbit trim
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Booster magnetic system

• Aperture (inscribed diameter) 5.0 cm
• Maximum current 700 A
• Maximum trim current for Y & Q trims 6 A
• Number of trim turns  per quadrant:
• Y-orbit  trim 116
• Q trim 40 
• Maximum strength of the trims @ E=1.2 GeV :
• Y trim: Y′max 1 mrad
• Q trim: ∆G/G 3.3 %

• Maximum field 1.76 T
• Maximum current [A] 700 A
• Number of turns 2×28
• Gap 2.7 cm
• Radius of curvature 2.273 m
• Effective magnetic length 1.190 m
• 2% dipole trim coil (X-orbit trim):
• Number of turns 2×34
• Maximum current 12 A

Quadrupoles (16 + 2 spares)Dipoles (12 + 1 spare)
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Booster magnetic system
Septum magnets (2) Sextupoles (8)

• Maximum bending field 1.00 T
• Maximum current 175 A
• Number of turns 48
• Gap 1.0 cm
• Bending angle 9.0°
• Effective magnetic length 0.642 m
• Width of “knife” 2 mm
• Corrected field integral in zero chamber <50 G*cm
• Corrected gradient integral in zero chamber <40 G

• Maximum sextupole strength [B”] 650 T/m2

• Maximum Current 15 A
• Aperture (ID) 6.0 cm
• Effective Length 0.085 m
• # of turns per coil1 40
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OK-5 FEL wigglers
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OK-5 FEL wigglers

Wiggler period λw, cm 12.0

Wiggler gap (vertical and horizontal), cm 4 × 4

Number of periods (vertical and horizontal) 32

Maximum current [kA] 2 × 3

Maximum field, kG 2.86

Amplitude of fundamental harmonic @ I=2 kA, kG 2.07

Relative value of the 3rd harmonic, % 0.6

Power consumprion [kW] 2×57

Overoll dimensions:
-Horizontal (width) [m]
-Vertical (height) [m]
-longitudinal (length) [m]

0.274
0.324
4.04
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OK-5 FEL wigglers

Pole cut compensating intergal gradient and octuppole

Magnetic simulations by MERMAID 3D
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OK-5 FEL wigglers

Compensation of asymmetry of the coils

I=2kA I=3kA

Not cut With cut No cut With cut

3D calc. Mag.
meas.

3D calc. Mag.
meas.

3D calculations.

GradientGs/cm 5.64 6.60 -0.21 1.57 8.64 0.22

Octupole G/cm3 -2.76 -2.70 0.00 -0.32 -4.38 0.03

Magnetic simulations by MERMAID 3D
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Dipo-Quadro-Sextu-Octupole magnet 
(DQSO) for low emmitance Duke  lattice

Required harmonics contents of DQSO magnet at nominal energy E=1.0 GeV:

for Leff=68.0 cm

Kn-1 ∂n-1B/∂xn-1(0,0)

1/mn kG/cmn-1 1/mn-1 kG/cmn-2

1 Dipole π/(14·Leff) 11.008 π/14 748.52

2 Quadrupole -4.2448 -1.416 -2.8865 -96.3

3 Sextupole -105.88 -0.353 -72.0 -24.0

4 Octupole -33250 -1.109 -22610 -75.4

Kn-1L=∫Kn-1dz ∫∂n-1B/∂xn-1dzn Field term
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Dipo-Quadro-Sextu-Octupole magnet 
(DQSO) for low emmitance Duke  lattice

•One half

•161×199×199 mesh size

Magnetic simulations by MERMAID 3D

2D theoretical profile of the pole

2D design  profile of the pole
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Conclusions:

•• MERMAID 3D is a powerful tool for MERMAID 3D is a powerful tool for 
magnetic design ;magnetic design ;

•• Mesh up to 20Mesh up to 20××101066 elements with RAM elements with RAM 
drive of 2 drive of 2 GbGb;;

•• Fast calculation;Fast calculation;
•• Well developed library of nonlinear Well developed library of nonlinear 

materials of all the types;materials of all the types;
•• Easy to learn, to master, and to use.Easy to learn, to master, and to use.


