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1 INTRODUCTION

Grazing-angle neutron scattering and properties of structures with reduced in one direction dimension-
ality are constantly developing fields of modern condensed-matter research. The developments of the
advanced methods of thin films O preparation created an avalanche of demand for the characterization of
thin films properties. Amongst the large body of complementary and competing techniques the neutron
scattering techniques have a number of advantages. They can be summarized as follows:

e contrast variation between different elements or isotopes due to different cross sections of different

atoms and the interaction with nuclei rather than with diffuse electron cloud seen by e.g. X-rays,

e very high penetration and access to buried interfaces due to a very low absorption cross section,

e direct access to the layer magnetization distribution via the magnetic dipole interaction of the

neutron spin with atomic magnetic moments,

e non-destructive even for delicate biological materials.

Since early 80-s neutron specular reflectometry has been developed into a commonly used exper-
imental technique for the investigation of thin films and multilayers. Now a days reflectometers are
used for the investigation of magnetic systems, organic materials, polymers and biological films (see
for review [1]). At present only conventional reflectometry is routinely used to investigate the structure
of films or multilayers perpendicular to their surfaces with fields of application ranging from magnet-
ic multilayers to biological films. Specular reflection delivers information about the depth profile of
the mean scattering length density (SLD) averaged over the whole sample surface. However, in reality
pure specular reflection does not exist, because real surfaces or interfaces are not ideal and cannot be
atomically flat. Therefore, specular reflection is always accompanied by off-specular scattering.

The full range of off-specular scattered intensity became accessible mainly due to the use of mul-
tidetectors. Off-specular scattering probes the lateral structure (lateral form factor, structure factor or
the roughness) at surfaces and interfaces in films or multilayers. Thus, the most exhaustive and detailed
information on the 3-dimensional structure (transverse and lateral) of multilayers can be gained using a
combination of grazing incidence neutron or x-ray scattering techniques, comprising reflectometry and
off-specular scattering.

The state of the art in surface preparation and characterisation has made it feasible to produce new
types of materials that are structured on the nanometer scale. Some of the best examples of en-
gineered solids so far are magnetic multilayers that are developed for reading heads for magnetically-
stored data. They consist of sandwiches of magnetic layers separated by a spacer that changes their
electrical resistance when exposed to the magnetic field of a stored bit. This effect is termed giant mag-
netoresistance (GMR) [2,3]. The structures are known as spin valves, since they preferentially transmit
electrons of one spin orientation [4,5]. A related phenomenon is oscillatory magnetic coupling, an os-
cillation in the magnetic orientation of two layers as a function of the thickness of the spacer. Modern
scattering depth resolving techniques like polarized neutron reflectometry with off-specular scattering
reveal the details of magnetic structures in GMR systems. An example of a Fe/Cr(001) multilayer,
showing GMR effect and corresponding experimental data obtained from the experiment on neutron
reflectometry [33], is depicted in Figure 1(a).

Recently polarized neutron reflectometry was applied to VCoq 7Feq 3 periodic magnetic stripe ar-
ray prepared by electron beam lithography and etching techniques [6]. Understanding of magnetic
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a GMR multilayers

Figure 1. Panels on the left hand side show nanostructures in real space, right hand panels represent the same
nanostructures ’as seen’ by neutrons in experiments under grazing incidence. a) Fe/Cr multilayer (ML), consisting
of magnetic layers (red and rose) with strong in-plane anisotropy and with lateral domains of alternating direction
of magnetization (marked with blue arrows) across the film due to exchange coupling via non-magnetic spacer
layers (white); 2-dimensional map of intensity reflected and scattered by the Fe/Cr ML. b) Periodic magnetic stripe
array with the easy axis along the stripes; 2-D intensity map is determined by the periodic lateral structure, ripple
domains and correlations in multidomain ensemble. c) Lattice of Fe dots; scattered intensity is determined by the
shape, size, distribution of dots and their magnetization. d) Nano-composite film of metallic nanowires in meso-
porous silica matrix; information about the size of the nanowires, monodispersity of their diameter and distribution
and orientation within the matrix is encoded in the 2-D intensity map. e) Spherulites, or multilamellar vesicles
spontaneously formed in cationic surfactant with low concentration. Complex behavior, phase transition, size of
multilamellar vesicles and the details of the transverse and lateral structure of the film can be extracted from the
measured reflected and off-specular scattered neutron intensity.

interaction between neighboring stripes is important for magnetoelectronic applications. Magnetization
reversal in a stripe pattern with induced uniaxial anisotropy, the domain structure and inter-stripe corre-
lations were successfully obtained using reflection experiment (see example in Figure 1(b)).

Now a days it became possible to produce periodic arrays of submicron dots on flat surfaces or in-
side of semiconducting, metallic or superconducting films and multilayers used for optical and magnetic
storage applications [7,8,9]. One of the first pilot experiments on a lattice of Fe dots with the diame-
ter of 300 nm and height 80 nm was performed with neutrons polarized along the dot magnetization
(Figure 1(c)). The magnetization of the dots, their shape, size and periodic distribution averaged over
the size of the sample were obtained [10].

Magnetic nanowires embedded in mesoporous silica matrix, being highly organized anisotropic ma-
terials, are important nanostructures for development of high density data storage devices. First ex-
periments on neutron scattering were performed to trace the influence of the preparation conditions
on magnetic and structural properties of nanowires [11] (Figure 1(d)). From the neutron experiment
one can obtain information about the influence of the anisotropy parameters of the magnetic metal and
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metal oxide nanowires formed in the structural cavities of solid state nanoreactors (zeolites, mesoporous
silica and anodic alumina membranes) on the magnetic properties of the system.

For design of biosensors based on membrane receptors the development of biocompatible interfaces
plays an important role [12]. Small unilamellar phospholipid vesicles are basic elements in the design of
biophysical model systems for studying the interaction of biomolecules with membrane surfaces [13].
Neutron reflectometry was used to study in sifu phospholipids bilayer formation [14]. Lamellar vesicles
are of particular interest in biochemical field for drug delivery, they can be also used as biological mem-
brane models [15,16]. Recent advances in novel drug delivery systems focused on alternate surfactant
systems, which can also produce similar structures [17]. Thus the systems containing mixtures of cation-
ic and anionic surfactants or single-chain nonionic surfactants can form vesicular solutions. The ordered
lamellar structure and stability of dichain cationic surfactants was studied by neutron reflectometry [18],
the interfacial structure of the aggregates was examined by off-specular scattering (Figure 1(e)).

Although the list of experiments could be continued, already from this brief overview of neutron
reflection experiments on nanoscale objects one can see that neutron surface scattering technique is
increasingly used in modern centers of excellence for Nanoscience and Nanotechnology development.
The reason is that one challenge in the production of nano-size objects is to control their structure, size,
shape and symmetry. Using neutron reflectometry one gets access to the structure and morphology of
such systems like continuous single and multilayers, periodic lateral structures, buried structures and in
contrast to local probes like e.g. transmission electron microscopy or secondary ion mass spectroscopy,
it is not destructive and provides information averaged over the whole volume of the system.

2 NEUTRON COHERENCE LENGTH

The information about the three-dimensional structure (transverse and lateral) is encoded in the inten-
sity of neutrons reflected and scattered by the sample. Examples shown in Figure 1 well demonstrate
the variety of two-dimensional maps of scattered intensity ’reflecting’ the complexity of the investigated
objects. Strong intensity, which spreads diagonal (Figure 1 (a)—(d)) or horizontal (Figure 1 (e)) corre-
sponds to the specular reflection. It is determined by the depth profile of the mean scattering length
density (SLD), which corresponds to the transverse structure of the system averaged over the whole
sample area. The deviations from this averaged structure create lateral fluctuations of the SLD around
its mean value which give rise to off-specular scattering around the specular reflection.

When do we see off-specular scattering?

It happens when the lateral size of these fluctuations is smaller than the lateral projection of the neutron
coherence length. The lateral size of the fluctuations is often described by the correlation length. Cor-
relation length is the mean value of the lateral distance between two points, which scatter in phase [19].
In order to estimate the neutron coherence length in the sample position, we will consider the scattering
geometry of the reflection experiment. Neutron sources produce non-coherent radiation, so we do not
discuss the coherence length of the source. Neutron coherence length is determined solely by the time
(wavelength) and space (angular) coherence (resolution) of the beam. Perfectly monochromatic point
neutron source does not exist, thus the spectral purity (spectral bandwidth) of the source 6A/A deter-
mine the temporal coherence (longitudinal coherence), whereas the angular resolution d\ (or the size)
of the source determine the lateral (transverse) coherence.

2.1 Spectral bandwidth and neutron longitudinal coherence length

Longitudinal coherence length is defined as a distance over which radiation of spectral width 6 A becomes
out of phase by 7, as shown in Figure 2. For a wavelength )\ propagating with n periods longitudinal

coherence length is
Ly =An 2.1
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Figure 2. Longitudinal (temporal) coherence length. It is a distance neutron travels within coherence time and
determines the maximum depth of the object in a reflection experiment.

For a wavelength A + 6\
1
L= (\+6X) <n — 2) 2.2)

From Eq.(2.1) and Eq.(2.2)one can easily obtain the expression for the longitudinal coherence length in
the following form
/\2
L = %X (2.3)
The longitudinal coherence length defines the largest path difference for which interference is possi-
ble. From easy estimation one can obtain that in the neutron reflection experiment the path difference

between waves reflected from the surface and the substrate is normally smaller than the L;.

2.2 Angular resolution and neutron lateral coherence length

From the Heisenberg’s uncertainty principle follows that the neutron momentum becomes undefined as
the position in the aperture becomes more and more well-defined.

The point source does not exist, therefore the angular resolution has a finite value. The angular res-
olution determines the lateral neutron coherence length. From each point of the sample one sees the
source (or a collimator, which determines the resolution) of size a on distance R within the divergence
angle ¢;. Normally R >> a. From geometrical consideration (Figure 3) follows, that the lateral coher-
ence length L (the coherence length across the beam) can be found as

D A A

Ls =2 =% ~ %a

2.4)

where 6« is the angular resolution.
For the small angles of incidence « one should take into account the projections of both coherence
lengths on the sample surface, so that

Ly A2
L7 cosa 2a8)
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Lo = === 2.5)

sin « @ ada
During the reflectometry experiment the projection of the lateral coherence length is not a constant
and can change by factor 10-15. For the monochromatic beam it changes with the scanning of the
incident angle. For the time-of-flight experiment at a fixed incident angle L¢ is a function of the neutron
wavelength.

The same considerations stand for the coherence length determined by the spatial detector resolution
and the distance samples-detector, so that for the determination of the resulting coherence length one
should take into account the incident beam and scattered beam parts.

source detector

L=

Figure 3. Spatial neutron coherence length Lg' in the sample position. R is a distance from the source with linear
dimensions 7, « is the angle of incidence, A« is the angular divergence.

From a simple estimation one finds that the LS can be as large as a few hundreds of microns along
the beam. Hence, the transverse coherence length in the film plane is large compare to the length scales
of the lateral extension of 'nanos-scale’ structures or inhomogeneities, but small compare to the lateral
sample size. Thus, the scattered radiation is the incoherent sum of the contributions, scattered from
statistically independent parts of the film.

3 SCATTERING UNDER GRAZING INCIDENCE AND DISTORTED WAVE BORN
APPROXIMATION

Traditionally in diffraction experiment the scattering of neutrons is calculated within the Born approx-
imation combined with the Fermi pseudopotential, which is parameterized by the atomic scattering
length. In this approximation a plane wave scattered by a weak scatterer, is not much perturbed by the
scattering process. This approximation gives rather accurate answers being applied to neutron diffrac-
tion or small angle scattering, when the most of the neutrons are not deviated by the scattering process.
However, for the reflection experiment, especially close to the total reflection region, only a small part
of the neutrons is transmitted and the most of the incident beam is reflected.

A more appropriate way of making the perturbation calculation for reflectometry is to find first exact
wave functions for the neutron interacting with the mean film potential averaged over the lateral coor-
dinate p. To calculate the off-specular scattering, one should make a perturbation calculation using the
found wave functions and a perturbation potential, which is the deviation from the mean film potential.
This perturbation theory is known as distorted wave Born approximation (DWBA) [20]. In a pioneer
work of Vineyard [21] it was first applied to the case of the grazing incidence surface diffraction and
shortly after to the study of the structure of the liquid-vapor interface of a liquid metal [22]. Later, Sinha
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et al. [23] and R. Pynn [24] used DWBA approach for a calculation of the specular and diffuse scatter-
ing from rough surfaces. The routine was developed further for the calculation of the magnetic [25] and
non-magnetic [26] off-specular scattering based on the super-matrix formalism [27].

3.1 Specular reflection

Let us consider a simple reflectometry experiment (Figure 4). Incident neutrons of wavevector k; are
specularly reflected to wavevector k¢. In this case the incident angle «; is equal to grazing angle of
reflection oy If at the scale smaller than the projection of the neutron coherence length LY the variation
of the interaction potential is a function of only z-coordinate perpendicular to the sample surface Vj(2),
the interfaces can be regarded as laterally flat. Then the solution of the Schrodinger equation

{V? + kg — (2m/P?)Vo(2)} [¥(r)) = 0 3.1)
above the surface can be written as
[W(r)) = exp(irp){e™* + Re "} [1(0)) = 0 3.2)

where k = {é,p} is the neutron wave vector and k = 27/, k is its lateral, and p; is its normal to
the surface components. |¥(r)) is two-component vector of spin states, R is the reflectance matrix. In-
side the film the wave field is formed by the waves transmitted trough and reflected from each interface.
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Figure 4. Scheme of a reflectometry experiment. (a) Magnetic ML (with repeating bilayers of a thickness d result-
ing in a total thickness D) in a saturating external magnetic field H; k; and k; are the wave vectors of a neutron
incident with an angle cv; and specular reflected under the angle o (a’) Calculated R and R~ reflectivity profiles
as a function of momentum transfer g ; positions of the Bragg peaks are determined by the bilayer thickness d, the
Kiessig fringes [30] are due to the total film thickness D. (b) ML in a remanent external magnetic field resulting in
the opposite alignment of the magnetization vectors in the alternating magnetic layers. (b’) Calculated R and R~
reflectivity profiles have 1/2 and 3/2 - order Bragg peaks additional to ones in Figure 4(a’), they are determined by
the doubling of the 5 magnetic part of the scattering length density profile.
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Transmission ¢ and reflection 7 operators can be found from the boundary conditions and the vector of
spin states transforms into

[1p(2)) = te'P* + fe P2 (3.3)

For magnetic media the mean magnetic field is B = H + 47M, where H is the external magnetic
field and M is the mean in-plane magnetization. The quantization axis is along the vector B, thus the
eigenvalues of the operator p are written as

pE =} —pk Frip)? (3.4)

with py = v/4mnby and pyy = /2mpuB, where nby is the nuclear scattering length density, p is neu-
tron magnetic moment. From the continuity conditions for the wave functions and their first derivatives
at each interface of a multilayer structure with a set of layers with thickness d,, follow equations

d

F oipndn 5 = pndn _ f A
tpe” + Ppe Pl = lp+1 + Tt

(-Eneipnd” - fneiipndn )Isn = (in-i-l - 7ﬁn-i—l)]an-'rl (35)

A solution of these equations can be found via the supermatrix formalism [27] as well as via the itera-
tively exact method called Parrat’s recursion relation [28].

An example of calculated reflectivity curves from a magnetic multilayer with flat interfaces is shown
in Figure 4. The system is a "typical’ multilayer structure, showing GMR effect.

It is composed from twelve identical Fe magnetic layers with uniaxial in-plane anisotropy separated
by non-magnetic Cr spacers and deposited on a Si substrate. The direction of the external magnetic
field is chosen along the easy axis. In saturation (Figures 4(a), 4(a’)) the layer magnetizations are fully
magnetized parallel to the external field. In this case only non-spin-flip (NSF) reflectivity curves, RT"
and R~ exist, which correspond to two orientations of neutron polarization. The reflectivity curves
have well known characteristic features, like the oscillations determined by the total thickness D and
the Bragg peaks, corresponding to the bi-layer thickness d.

When the external magnetic field is released down to a small value of a guide field, the magne-
tizations in alternating Fe layers will align anti-parallel to each other due to the exchange-coupling
interaction [29]. This will manifest in the appearance of additional 1/2, 3/2, etc. -order Bragg peaks
(see Figure 4(b’)), corresponding to a doubling of the bi-layer structure due to the magnetic term in
Eq.(3.4). The calculations shown in (Figure 4(b’)) are valid only for the case of a monodomain state of
each magnetic layer.

However, it would be difficult to imagine that in the latter case the magnetic layers of the discussed
multilayer system will preserve a monodomain state in remanence [31]. In order to minimize the free
energy of the ferromagnetic material, the magnetic layers will decompose into a set of domains with
opposite magnetization, which coincide with a direction of easy magnetization axis. In this case two
scenarios are possible: large and small domains.

The first scenario is when the domain size is greater than L. This conjecture can be proven by the
absence of off-specular scattering. If it is so, one should calculate reflectivity profiles for each type of
domains and add them afterwards incoherently.

The second scenario is if a certain amount of off-specular scattering is detected. It means that the
lateral magnetic inhomogeneities (magnetic domains) are smaller than L¢, then the wave is not only
reflected in specular direction and transmitted in the direction of the incident beam, but also scattered in
off-specular direction both above and below the horizon (Figure 5). This case should be treated within
the DWBA formalism and will be discussed in the next section.
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Figure 5. Magnetic ML with magnetic domains. Incident k; and specular reflected k; wave vectors are shown
with black arrows, arrows marked with red color correspond to off-specular scattered wave. Diagram on the right
hand side represents the scattering process in the reciprocal space.

3.2 Off-specular scattering

Lateral fluctuation of the SLD around its mean value give rise to the perturbation interaction potential
operator in the spin space

Vp(r) = V(r) - Vo(2) (3.6)

The wave functions ¢ (k;; p, z) and ¢ (ky; p, z) of incident and scattered waves for mean film poten-
tial averaged over the lateral coordinate p were determined in the previous section. Using these wave
functions and the scattering, we find then the scattering amplitude

f K =

m ~ . .
573 / dr (7 (K7, 7)| Vi(r) [¢ (K", 7)) 3.7
27h
The perturbation potential is proportional to the scattering length density of the fluctuation F(Q), which
can be written [25] as

F(Q) =bnFn(Q) + (om 1 )by Fi(Q) (3.8)

where by and by are the nuclear and magnetic scattering lengths, Fy(Q) is the nuclear structure
factor, Fp; (Q) is the magnetic form factor, o is the vector of the Pauli matrices, m is the component
of the layer magnetization vector perpendicular to the momentum transfer.

For a multilayer structure one should take into account refraction and the scattering of waves reflect-
ed from each interface. This was done in the frame of the DWBA in [25,26,27,28,29,30,31,32] and the
scattering operator for each layer looks as follows:

Frg =t + 4 FV 7y + 7 p BT 4 7T (3.9)

The important point is that the scattering from a magnetic layer is accompanied with transition between
the spin states {+, —}. From the general definition [32] the scattering cross section and the reflectivity

can be written

do S A T Si (D A T
25 = Trip"(Ff)i Fri} R="Tr{p'(R")p' R} (3.10)
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where the density matrices p* and 57 describe the properties of polarizer and analyzer, respectively
1 g1
p :5(1+0'Pi) p 25(1+0Pf) (3.11)

Substitution of the Eq.(3.9) into Eq.(3.10) provides a general equation for the scattering cross sections
[27], whose diagonal elements are written as follows [32]

o
o = IR i G139
dd;;i — |F, +iF.|? (.19
dove(z2) B dore(z2) _ |Fx(z)|2 (3.15)

2.,  do2__

do.mm(zz) do.mm(zz)

= = F
A2, o, #(®)
The application of obtained formulas to different magnetic and non-magnetic structures allows for anal-
ysis of specular reflectivity and off-specular scattering from layered systems. This will be shown in the
next sections.

(3.16)

4 NUMERICAL CALCULATIONS: EXAMPLES

The various experimental data shown in Figure 1 are collected in the broad range of incident and scat-
tered momentum transfers, including the total reflection region. What are the sources of off-specular
scattering? One can classify several main groups, which are shown in Figure 6 and which embrace the
majority of possible ’layer fluctuations’.

The first one is the interfacial (surface) roughness (see Figure 6(a)). Roughness consists of surface
irregularities which result from the various processes. These irregularities combine to form surface tex-
ture. Usually roughness is characterized by the absence of the regular lateral structure and is treated
in terms of its correlation properties on the mesoscopic (sub-micrometer) scale using some distribution
functions.

Nanoparticles embedded in a matrix, as shown in (Figure 6(b)), change the morphology and can
initiate a phase transformation of the host matrix. Lateral fluctuations in such system will be charac-
teraized by the particle form factor and the particles’ size distribution. The lateral fluctuations from the
nano-objects inside the layers produce off-specular scattering additional to the one from the interfaces.

Domain formation plays a crucial role in the magnetization — reversal characteristics. Except the case
of the saturating external field, the lateral magnetic structure in films and multilayers is not stable and
falls into a set of lateral domains (see Figure 6(c)). The magnetic scattering cross section is determined
by the domain lateral form factor, the multilayer structure factor and a combination of reflectance and
transmittance amplitudes for both spin states. The off-specular scattering carries the information not
only on domains, but also on mean magnetization averaged over domains [33].

Lateral (surface or buried) periodically patterned structures like arrays of micron and submicron size
stripes, dots, rings etc., which found application in optical and magnetic storage devices, are shown in
(Figure 6(d)). The off-specular scattering from such structures is determined by the form factor and the
internal structure of the lateral objects, as well as by their structure factor.
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Figure 6. Different types of the layer density fluctuations (or ‘roughness’) in films and multilayers. The sketches
in the top and bottom rows show examples of two limiting cases of ideally conformal and non conformal roughness.

An important parameter in the description of the lateral surface and interfacial structure is the pa-
rameter of conformity. This is a measure of the replication of the roughness profile from interface
to interface (or from layer to layer) within a multilayer. The sketches in the top and bottom rows in
Figure 6 show examples of two limiting cases of ideally conformal and non conformal systems.

In the following we will discuss and illustrate different effects in off-specular scattering pattern.

Ideal interfaces Scattering from a non-magnetic multilayer

 — |

I : 2n=/D
. total thickness
oscillations
d=80A
D=960A
N =12 layers : 2"""’ :
; bilayer thickness
i 'y Bragg peaks
C pA

Figure 7. 2D intensity map from a non magnetic ML with ideal interfaces. The strong intensity along the diagonal
corresponds to the specular reflection, total reflection region is near the origin of the map, followed by the total
thickness oscillations and the two Bragg peaks originating from the bilayer thickness d.

Let’s start from a simplest case of a multilayer structure with ideal interfaces (see Figure 7). The
structure of the film is chosen to be the twelve times repeated bi-layer thickness d, resulting in the total
film thickness D. In the absence of roughness only the specularly reflected intensity determined by the
transverse structure of the film will be obtained. The result of the calculation is shown on the right side
of the Figure 7. It is presented in a form of a two-dimensional map as a function of p; and py, the
normal components of the neutron wave vector (p; = ksino; and py = ksinay , where o;5 are the
glancing angles of incidence or scattering, respectively, as explained in Figure 4). The main features of
specular reflectivity are the oscillations, determined by the vertical periodicity of the SLD in the film.
The specular reflected intensity along the line p; = p; shows the total thickness oscillations with period
pi +ps = 27/D, as well as the 1°" and 274 order Bragg peaks at p; +py = 2mn/d. The total reflection
region is visible as high intensity close to the origin.
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If within the L¢ the interfaces in the multilayer are not flat and the transitional invariance in lat-
eral directions are violated, then the roughness induced local fluctuations of an actual SLD around its
mean value give rise to the off-specular scattering. Figure 8 shows the calculation of the same mul-
tilayer as in Figure 7, but with rough conformal interfaces. The lateral and transverse dimensions of
roughness are £ = 30 nm and o = 0.5 nm. The significant feature of conformal roughness is that the
scattering is arranged into the sheets stretched perpendicular to the specular line. There are two types of
the off-specular scattered intensity. The first one corresponds to the scattering arranged along the lines
(pi +pf) = 2N/ D running through the thickness oscillations on the reflectivity line. They appear due
to conformity between the substrate and surface roughness. The second one is arranged into the Bragg
sheets stretched along the lines (p; + py) = 27n/d crossing the Bragg peaks on the reflectivity ridge.
Off-specular sheets are distorted due to refraction effects at low values of p; and/or p approaching the
total reflection region and become straight at high values of p; and py.

Rough interfaces

Conf= 00O

Bragg-sheet scattering”

Q0 09% 002 003 004 -J-:I‘: 006 007 008

P A

Figure 8. 2D intensity map from a non magnetic ML with conformal interfacial roughness. Off-specular scattering
is arranged into the sheets crossing the reflectivity line in the positions of the thickness oscillations (lower intensity)
and of the Bragg peaks (marked with arrows).

Until now we have considered a non-magnetic system. However, as it was already discussed above,
magnetic films and multilayers in addition to non-magnetic interfacial roughness can form a domain
structure and/or interfacial magnetic roughness, which give rise to magnetic off-specular scattering.

Let us consider now the scattering from a magnetic multilayer. For simplicity we suppose first, that
the interfaces are flat within L. The system, which we model and calculate, is shown in the Figure 9. It
consists of twelve bilayers 57Fe(70A)Cr(10A)] with in-plane four-fold anisotropy and grown on Al,O3
substrate. This is an excellent example of a system showing giant magneto-resistance effect [2,3] related
to antiferromagnetc exchange coupling interaction between the magnetic moments in alternating Fe
layers and with their mutual reorientation under an applied magnetic field [33]. The external magnetic
filed H is applied parallel to the sample surface. For H < Hgutyration the sample falls into lateral
domains sketched in Figures 9(a) and 9(b). For simplicity we assume a homogeneously canted state in
the layer magnetization distribution with the canting angles +¢. Domains reduce the dipolar energy via

demagnetization of each individual layer n, and the mean value of magnetization is Mi = Msin @,
An example of numerical results simulating the described model of reflected and scattered intensity
for incoming neutrons in ‘-’ and ‘+’ states are shown in Figure 9(d), 9(e) for the case when magnetic
domains with mean size of 280 nm are conformal through the multilayer stack. Two dimensional plots
reveal a number of remarkable features. One can clearly see two antiferromagnetic Bragg sheets along
the lines (p. + p;fF)d ~ m,3m, and a set of low intensity sheets running parallel to the Bragg sheets. The
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distance between them is determined by the total thickness of the multilayer. The other important feature
is that the off-specular intensity is strongly asymmetric. This effect is determined by the asymmetry in
the spin-flip scattering amplitude F, with respect to interchange of the incident and outgoing wave
numbers [32]. The critical values at which the off-specular scattering is cut, are related to the scattering
length densities Nb being different for the two neutron spin states: NV b* = Nb, + Nb,,, where N
is the atomic number density, b,, and b,,, are the nuclear and magnetic parts of the scattering length,
respectively [34]. The spin-flip off-specular scattering is determined by the perpendicular component of
the magnetization vector.

C
a Top view .
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e |- i
HZEZS i
My=Mcosg
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b
s . ]
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=== .

Magnetic domains
are conformal
across the ML stack

Figure 9. Scattering from a magnetic ML with ideal interfaces and magnetic domains. Lateral and transverse struc-
ture of the system is shown in panels a (top view) and b (side view). c) Directions of the magnetization vectors in
two types of domains with a canting angle ¢ with respect to the neutron quantization axis. 2D maps of reflected
and scattered intensities for neutrons with spin anti-parallel (d) and parallel (e) to the external magnetic field. The
strong asymmetry in the off-specular scattering is due to the spin-flip origin of the scattering and two critical values
of the scattering length density for two neutron spin states.

The other effect seen in Figures 9(d), 9(e) is the appearance of ‘anomalous’ Bragg sheets. They
spread parallel to the reflectivity ridge on a distance (p:r — pjf) D =~ 7 [35]. This type of scattering
appears when the scattered neutron wave is reflected by the interface. Again, due to the spin-flip origin
of the scattering in the present example it is strongly asymmetric.

Now we will combine the two cases in a rather complicated system of a multilayer with rough
interfaces and magnetic domains in the magnetic layers. This system is shown in Figure 10. The two-
dimensional pattern of the scattered intensity for spin-down neutrons is a superposition of spin-flip and
non-spin flip off-specular scattering, originating from the two sources of non-magnetic interfacial rough-
ness and magnetic columnar domains as it was discussed earlier. This example shows that off-specular
scattering is roughness selective, thus the different parts of the pattern are determined by different pro-
cesses and can be analyzed in the experiment [33,34,35].

The appearance of characteristic features in the off-specular pattern depends not only on the lateral
fluctuations of SLD but also on their vertical correlation (or conformity parameter). Until now we con-
sidered the case of ideally conformal roughness with full replication from interface to interface or from
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layer to layer. If the roughness profile of different interfaces correlates only partially on a distance of
vertical correlation length A | , then one should introduce an inter plane correlation function [36]

do . -
_ o —lzm—znl|/A i+ f
0 =¢ L [ ZE/ Tr(p"Eyp' Fy) 4.1)
0 =1

where ﬁ'lf is the scattering operator, p*f are the density matrices and z is the transverse coordinate.
Figures 10(b) and 10(c) show calculations of off-specular scattering for the same system as in
Figure 10(a), but assuming different degree of conformity. In the case shown in Figure 10(b) the SLD
fluctuations (magnetic and/or non magnetic) are partially correlated from layer to layer, e.g. the phases
of scattered waves are partially coherent. In this case in addition to the sheet-scattering from correlated
roughness an additional intensity from not-correlated roughness, so called Yoneda scattering, appears
and spreads along the lines p*/ = p°.

a =

| |
:E

: S

Figure 10. Scattering from magnetic multilayer with rough interfaces and magnetic domain structure. Left panels
(from top to bottom) show in real space MLs with the same structure but with different conformity between the
interfacial roughness and between the magnetic domains: a) ideally conformal system; b) ML with partial degree
of conformity; c¢) system with non-conformal magnetic and non magnetic fluctuations. The panels on the right side
represent 2D intensity maps calculated from the MLs with different parameter of conformity ¢.

The last case (see Figure 10(c)) corresponds to the system with non correlated roughness when in-
terfaces scatter independently. The Bragg sheet scattering disappears, the off-specular scattering from
individual interfaces is superimposed, and the Yoneda scattering becomes more intensive. The remark-
able feature is that the Yoneda scattering from this system is rather complicated. The asymmetric part
the Yoneda scattering is the spin-flip intensity from non correlated magnetic domains and the symmetric
part is determined by the non correlated non magnetic interfacial roughness.

In the numerically calculated examples described above we have shown and explained the main
features appearing in different patterns of off-specular intensity scattered by magnetic and non magnetic
systems. In the next section we will discuss several experimental results.
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5 EXPERIMENTAL DATA: EXAMPLES

5.1 Self-assembled copolymer mulilayers

In view of current interest in fundamental problems of polymer surface and interface formation, as well
as due to technological importance, the structures of diblock multilayers were intensively studied by
employing a number of different experimental techniques such as optical and atomic force microscopy,
transmission electron microscopy, X-rays and neutron specular reflectometry. However, none of them
gives detailed quantitative information simultaneously on both outer-layer lateral arrangement and the
transverse and lateral structure of the inner interfaces. This information can be obtained from the ex-
periments on off-specular neutron scattering, inasmuch as the different contributions to the measured
pattern are discerned and modeled [26,36].

Symmetric diblock copolymers consisting of two chemically different polymer chains linked end
to end are micro-phase separated into domains due to the immiscibility of the two polymers. The mix-
ture of this diblock copolymer with a solvent is spin coated onto a flat substrate. During the following
slow annealing to above the glass transition temperature the micro-phase separation leads to a lamellar
ordering parallel to the substrate.

An uncompleted top layer and rough interfaces are characteristics for most symmetric diblock-
copolymer polymer films after annealing. The surface consisting of islands, holes or ’labyrinth’-type
structures together with interfacial roughness buried inside the multilayer film, create off-specular scat-
tering. Using a model based on the dynamical scattering theory for the analysis of the 2-dimensional
map of the scattered intensity, we identified and modeled the different sources of off-specular scattering
and obtained rather complete information on the surface topology and the morphology of the interface
roughness.

The system under consideration is a thin film of a symmetric diblock copolymer of deuterated
polystyrene, d-PS, and polybuthylmethacrylate, PBMA, denoted P(d-S-b-BMA) with the molecular
weight Mw = 248300 g/mol, polydispersity Mw/Mn = 1.03 and a symmetric block ratio (f = 0.5).
The sample was prepared by spin coating a toluene solution of the copolymer blend onto the glass
substrate and annealed at temperature 151°C for 94 hours.

The reflected and scattered intensity is depicted in Figure 11(a) as a function of p; and p; . The
specular reflection runs along the ridge p; = py. It is evident that the axis (p; + py) = Q. represents
the usual perpendicular momentum transfer in specular reflection. The off-specular scattering described
as a function of (p; — py) spreads out left and right from the specular ridge. The model fit to the data
shown in Figure 11(b) reproduces the measured intensity distribution. The model itself is schematically
depicted in Figure 11(c). The details of the model are discussed in the following.

The fit to the reflectivity line reveals that the polymer film consists of 4 complete layers of
P(d-S-b-BMA) and a top layer with holes. The reduced SLD of the top layer reflects the presence of
holes covering 10% of the film surface area. The following sequence of Bragg-peak positions is defined
by the thickness L of the PS-PBMA multilayer and the intensity distribution of the Bragg peaks by
the SLD amplitudes above the substrate. The value of L varies slightly across the film thickness. The
interfaces are modeled by error functions, the width of which represents its roughness.

The obtained SLD (or potential) structure enters into the wave equation to obtain the “zero order”
solution of the scattering process. Here we introduce not the potential with sharp interfaces [23] but the
laterally averaged potential.

In order to distinguish between the effects of roughness and islands, one needs to figure out which
particular features in Figure 11 originate from each of them.

The model calculation for the roughness at the interfaces yields the picture in Figure 12(a), 12(a’)
containing contributions from conformal and non-conformal roughness. The vertical correlation length
expressed by the conformity parameter, which in terms of number of interfaces determines the width of
the correlation, gives the ratio between the two scattering mechanisms. Here the best agreement is found
with a conformity parameter of 6.
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Figure 11. Experimentally mesured (a) and theoretically modeled (b) three-dimensional intensity maps of specu-
lar reflection and off-specular scattering from the annealed sample of P(d-S-b-BMA) multilayer film. (c) Neutron
scattering length density profile of the transverse structure of the ML as function of the distance from the substrate
extracted from the model fit to the data; (d) lateral structure of the ML shows the lateral interfacial roughness fluc-
tuations with the mean lateral distance &, as well as the surface island structure with the mean lateral dimension d.

The significant feature of conformal roughness is Bragg-sheet scattering through the n Bragg-peaks
on the reflectivity line with proportional intensity to them and extending along (p; + pf)nBragg- De-
viations from this behavior become apparent whenever the Bragg-sheet scattering crosses with events
arising from dynamical scattering as Yoneda scattering or anomalous Bragg-sheet scattering. The Yone-
da and super-Yoneda scattering is just non-conformal roughness scattering, running out of the critical
edge (along p; y = p.) and Bragg-peaks (with p; or py = (i, f)nBragg)s respectively. The advantage
of the plotin (p; + ps) = f(pi — py) is that (p; — py) is a linear function of ¢; and «y the incoming
and outgoing scattering angle, whereas @, the lateral momentum transfer, is a non-linear function of
these angles. Therefore the Yoneda scattering appears here as straight lines. However, also the Yoneda
scattering is affected by the crossing with the Bragg-sheet scattering and the anomalous Bragg-sheet
scattering. The latter is parallel to the reflectivity line along the lines with (p; — py) = 2np/L. Peaks
appear if one of the intersecting Bragg sheets is suppressed while the other is enhanced by the structure
factor. Otherwise the interference between “normal” and “anomalous” scattering is destructive. Apart
from these details the overall intensity distribution along the Bragg sheets mostly depends on the lateral
correlation length £ and fractional exponent v of the roughness height-height correlation [23].

The off-specular scattering originating from holes (see cartoon in Figure 12(b) can also be well
identified (see Figure 12 (b’)). The off-specular pattern is determined by the Yoneda and super-Yoneda
intensity lines. Here the parameters of the perturbation potential are the depth of the holes and the
mean diameter of the randomly distributed holes. The depth of holes with L = 610 A coincides with
the thickness of the repeat distance of the polymer film (PBMA-PS-PS-PBMA). Assuming a random
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distribution of holes their mean diameter was found as d = 9000 A. The size distribution is described
by a Lorenzian distribution with exponent —1.5.

pep A

Rough interfaces Islands

Figure 12. The model and results of calculations for the contributions to Figure 11(b): (a) and @0) off-specular
scattering from the interfacial roughness between PS and PBMA; (b) and (bO) pattern of off-specular scattering
from holes (or islands) on the surface of the ML.

Having identified the features through which the scattering from the interface roughness and surface
structure can be characterized, the fit to these regions can be performed along cuts in the 3-d intensity
map of Figure 11. The parameters of the perturbation potential used in the DBWA [31,26,23] are an
average height o = 30 A centered at the interfaces with an average lateral distance £ = 1500 A and
v = 1.5 [35]. The overall decay of the higher order Bragg sheets is mainly determined by the conformity
parameter and the rms roughness o. The latter is found as ¢ = 30 A. So, the PBMA-PS interfaces are
oscillating back and forward with average amplitude of 30 A over a surface area with average diameter
of 1500 A and this oscillation is nearly conformally repeated throughout the multilayer stack.

This example demonstrates that the off-specular scattering is roughness-selective, thus different
sources of perturbation give rise to different pattern of the scattered intensity.

5.2 Spin-resolved unpolarized neutron off-specular scattering from magnetic multilayers

Unpolarized neutrons scattered from magnetic multilayer self-separate according to the neutron spin
state in the dynamical scattering regions of Yoneda scattering and superstructure Bragg-sheet scattering.
Strong anomalies in the off-specular scattering originating from magnetic fluctuations in the multilayer
are determined by the spin-flip selective process.

In exchange coupled multilayers the interplay between the crystalline anisotropy, interlayer ex-
change coupling and external magnetic field strength leads to the result that the layer magnetizations in
successive Fe-layers in each columnar domain [33] are oriented at a certain coupling angle with respect
to each other as shown in Figure 13. Here we show that even unpolarised neutron off-specular scattering
can efficiently be used to determine the configurations of the atomic magnetic moments [37]. Reflec-
tometry experiments have been carried out on the EVA-spectrometer with a wavelength of 5.4 A and an
external magnetic field of 500 G. The sample was a ([Cr(9 A)/5"Fe(68A)]-x12 /Cr(68A)) multilayer on
a sapphire substrate grown with molecular beam epitaxy. The scattering geometry with specular and oft-
specular scattering and the sample composition are depicted in Figure 13: here the layer magnetization
is decomposed into domains (Figure 13 top view) with an antiferromagnetic interaction perpendicular
to the layering (Figure 13 side view). The coupling angle o between the magnetization directions of
successive Fe-layers arising due to the external field H is shown in the inset of Figure 13 top view. In
Figure 14(a) the 2-dimensional intensity map of specular reflected and off-specular scattered neutrons
is shown as a function of p; and py. The specularly reflected intensity along the line p; = py shows the
total thickness oscillations as well as the first order Bragg peak (pi = py = 0.041 A1 corresponding
to the bi-layer thickness of 77 A. The off-specular scattering originates from the domain structure of
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the multilayer. It appears as spin- ﬂlp Bragg-sheet scattering through the 1/2 and 3/2 order Bragg peak
positions (p; = py = 0.0205 A1 and p; = pr = 0.0615 A- 1, respectively) on the reflectivity line as
well as along the spin-flip Yoneda scattering parallel to p; and p; (Figure 14(a)). A proof of the spin-flip
character can be made by spin-analysis of polarized neutrons being scattered from the multilayer [33].
But here it is visible directly through the intensity cut-off due to critical angles. The two critical angles
are determined by the two scattering length densities SLD,, = SLD,,,, for the two neutron spin states.
SLD,, is the nuclear contribution of the °“Fe and SL D,y is the magnetic contribution from the parallel
to the external field component of the magnetic moments Mé (Figure 13). So, one critical angle shows
up in the units of momentum transfer along p; = 0.009 A=! and also along p; = 0.009 A~ due to the
use of unpolarized neutrons.

Top view

Side view
|ncom|ng neutrons

off-specul

Figure 13. (Top view) sketch of the arrangement of the domain magnetization vectors M (thick arrows) in the
Fe/Cr ML in the external in-plane magnetic field H'; schematically, the sample composition is presented; the cou-
pling angle « relates the magnetic moment components of one magnetic layer (within a domain) with the magnetic
moment of the adjacent Fe layer(s). (Side view) Scattering geometry and components of magnetic moment perpen-
dicular to the external magnetic field.

It is best visible in the characteristic spikes (marked with C in Figure 14) where the Bragg-sheet scat-
tering runs into the Yoneda scattering and intensity is cut for one spin-state. Any intensity below the
mark C originates from the other spin-state. For the sample used in this experiment the other critical
angle is imaginary because the difference of SLD,, — SLD,,), is negative. Therefore, the off specular
scattering extends down to the horizons along p; = 0 and py = 0 visible in modulated bands parallel to
the horizons (modified Yoneda scattering) marked with A and B in Figure 14(c) which interfere with the
scattering arising due to the total thickness oscillations. The positions of these Yoneda-bands depend on
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the value of the imaginary critical angle. These effects have been taken into account in the 2-dimensional
model fit shown in Figure 14(b). Another critical parameter is given by the substrate potential, which
leads to another cut of intensity. For the applied external magnetic field of 500 G this value coincides
with the first critical angle marked with C. An extended view of the modeled intensity distribution is
shown in Figure 14(c).

009,

001 002 003 004 005 006 007
p AT

Figure 14. (a) Experimental 2-dimensional intensity map of a Fe/Cr multilayer as a function of p; and py, the
perpendicular components of the incoming and outgoing wave vector, respectively. The strong intensity along the
line p; = p; corresponds to the specular reflection. The first order Bragg peak position corresponds to the Fe/Cr
bilayer thickness and does not show off-specular scattering. The magnetic spin-flip off-specular Bragg sheet scat-
tering spreads from the 1/2 and 3/2 order Bragg peak positions perpendicular to the specular line. (b) Model fit of
the 2-dimensional intensity map of a Fe/Cr multilayer shown in Figure 2(a). (c) Extended view on the region of the
Bragg-sheet scattering crossing the Yoneda-scattering for experimental data. A and B mark the position of Yoneda
scattering related to total thickness oscillations, C is the position of the first critical angle which coincides with the
position of the cut-off by the substrate potential.

With the model fit based on the distorted wave Born approximation [32] it is possible to describe all
details of the off-specular scattering and to unravel the detailed composition of the layer magnetization
in the multilayers system. In particular it has been possible to extract the two scattering length densities
related to °"Fe (SLD,, and SLD,,,) from the fit to the data obtained with unpolarised neutrons. The
knowledge of SLD,,, is decisive to determine the coupling angle « of the magnetic moments using for
M the full atomic magnetic moment of Fe. Consequently, the mean coupling angle can be determined
(also as a function of applied field) and related to the GMR effect [34].

In summary, we have demonstrated that rather detailed information on the morphology of materials
that are structured on a nanometer scale can be gained using the combination of neutron grazing inci-
dence techniques, comprising reflectometry and off-specular scattering. We show that the details of the
internal structure of multilayers are encoded in the two-dimensional map of the intensity scattered by
the film. The potential for the synthesis of highly organized structures depends on the aptitude to control
not only the distribution of the nano objects but also their morphology and the details of the spatially
defined long-range order of the host matrix.

This approach will be applied to a wide range of technologically important systems and can be used
to design novel composite architectures.
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