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Nonlinearities and effects of transverse beam size in beam position monitors
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The fields produced by a long beam with a given transverse charge distribution in a homogeneous
vacuum chamber are studied. Signals induced by a displaced finite-size beam on electrodes of a beam
position monitor (BPM) are calculated and compared to those produced by a pencil beam. The nonlin-
earities and corrections to BPM signals due to a finite transverse beam size are calculated for an arbitrary
chamber cross section. Simple analytical expressions are given for a few particular transverse distributions
of the beam current in a circular or rectangular chamber. Of particular interest is a general proof that in
an arbitrary homogeneous chamber the beam-size corrections vanish for any axisymmetric beam current
distribution.
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I. INTRODUCTION

In many accelerators, especially in ion linacs and storage
rings, beams occupy a significant fraction of the vacuum
chamber cross section. On the other hand, an analysis of
beam-induced signals in beam position monitors (BPMs)
is usually restricted to the case of an infinitely small beam
cross section (pencil beam). In this paper we consider the
problem for a vacuum chamber with an arbitrary but con-
stant cross section and calculate, for a given transverse
charge distribution of an off-axis relativistic beam, the
fields produced by the beam on the chamber wall. Com-
paring these fields with the fields of a pencil beam gives us
corrections (e.g., to BPM signals) due to a finite transverse
size of the beam.

Let a vacuum chamber have an arbitrary single-
connected cross section S that does not change as a beam
moves along the chamber axis z, and perfectly conducting
walls. We consider the case of �vb�bgc�2 ø 1, where
v is the frequency of interest, bc is the beam velocity,
g � 1�

p
1 2 b2, and b is a typical transverse dimension

of the vacuum chamber. It includes both the ultrarelativis-
tic limit, g ¿ 1, and the long-wavelength limit when, for

FIG. 1. (Color) Transverse cross section of the vacuum chamber
S and of the beam Sb .
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a fixed g, the wavelength of interest l ¿ 2pb�g. Under
these assumptions, the problem of calculating the beam
fields at the chamber walls is reduced to a 2D electrostatic
problem of finding the field of the transverse distribution
l��r� of the beam charge, which occupies region Sb of
the beam cross section on the boundary ≠S of region S
(see, e.g., [1]). The layout of the problem is illustrated in
Fig. 1.

Let the beam charge distribution l��r� satisfy the normal-
ization condition

R
Sb

d �r l��r� � 1, which means the unit
charge per unit length of the bunch. If we know the field
e��r , �b� produced at a point �b on the wall by a pencil beam
located at a point �r of region Sb , the field of the distribu-
tion is given by

E� �a, �b� �
Z

Sb

d �r l��r�e��r, �b� , (1)

where the vector �a is defined as the center of the charge dis-
tribution: �a �

R
d �r �rl��r�. Obviously, the case of a pen-

cil beam corresponds to the distribution l��r� � d��r 2 �a�,
where d��r� is the 2D d function. Let us start from a par-
ticular case of a circular cylindrical vacuum chamber.

II. CIRCULAR CHAMBER

In a circular cylindrical pipe of radius b, a pencil beam
with a transverse offset �r from the axis produces the fol-
lowing electric field on the wall:

e��r, �b� �
1

2pb
b2 2 r2

b2 2 2br cos�u 2 w� 1 r2

�
1

2pb

Ω
1 1 2

X̀
k�1

µ
r
b

∂k

cos�k�u 2 w��
æ

, (2)

where w, u are the azimuthal angles of vectors �r , �b, corre-
spondingly. One should note that this field is normalized
as follows: I

≠S
dl e��r, �b� � 1 ,
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where integration goes along the boundary ≠S of the trans-
verse cross section of the vacuum chamber.

Integrating the multipole expansion in the right-hand
side (rhs) of Eq. (2) with a double-Gaussian distribution
of the beam charge

l�x, y� �
1

2psxsy
exp

∑
2

�x 2 ax�2

2s2
x

2
�y 2 ay�2

2s2
y

∏
,

(3)

assuming, of course, that the rms beam sizes are small,
sx , sy ø b, one obtains nonlinearities in the form of
powers of ax , ay , as well as the beam size corrections,
which come as powers of sx , sy . To our knowledge, this
was done first for the double-Gaussian beam in a circular
pipe by Miller et al. [2], where the expansion was cal-
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culated up to the third order terms. More recently, their
results have been used at LANL in measuring second-
order beam moments with BPMs and calculating the beam
emittance from the measurements [3]. In a recent series
of papers [4] by CERN authors, the results [2] have been
recalculated (and corrected in the third order) and used
to derive the beam size from measurements with movable
BPMs.

In fact, integrating (2) with the distribution (3) can be
readily carried out up to an arbitrary order. Using in
Eq. (2) the binomial expansion for

rk cos�k�u 2 w�� � Re�eiku�x 2 iy�k�

makes the x and y integrations very simple, and the kth
order term (k-pole) of the resulting expansion is
E�k��u� �
k!
pb

kX
m�0

cos

µ
mp

2
2 ku

∂
xk2m

0 ym
0

bk

��k2m��2�X
s�0

�s2
x�2x2

0�s

s!�k 2 m 2 2s�!

�m�2�X
p�0

�s2
y�2y2

0�p

p!�m 2 p�!
, (4)

where x0, y0 stand for the beam center coordinates ax , ay . Explicitly, up to the fifth order terms,

E��r0, �b� �
1

2pb
1

1
pb2 �cosux0 1 sinuy0� 1

1
pb3 �cos2u�s2

x 2 s2
y 1 x2

0 2 y2
0� 1 sin2u2x0y0�

1
1

pb4 �cos3ux0�3�s2
x 2 s2

y � 1 x2
0 2 3y2

0� 1 sin3uy0�3�s2
x 2 s2

y � 1 3x2
0 2 y2

0��

1
1

pb5 �cos4u�3�s2
x 2 s2

y 1 x2
0 2 y2

0�2 2 2x4
0 2 2y4

0� 1 sin4u4x0y0�3�s2
x 2 s2

y � 1 x2
0 2 y2

0��

1
1

pb6 �cos5ux0�15�s2
x 2 s2

y �2 1 10�s2
x 2 s2

y� �x2
0 2 3y2

0� 1 x4
0 2 10x2

0y2
0 1 5y4

0�

1 sin5uy0�15�s2
x 2 s2

y �2 1 10�s2
x 2 s2

y � �3x2
0 2 y2

0� 1 5x4
0 2 10x2

0y2
0 1 y4

0�� 1 · · · . (5)
The multipole expansion (5) that includes terms up to
the decapoles leads us to an interesting observation: All
beam-size corrections come in the form of the difference
s2

x 2 s2
y and vanish for a round beam where s2

x � s2
y .

This would be obvious for an on-axis beam in a round
pipe from the Gauss law, but for a deflected beam the re-
sult seems rather remarkable.

It is not easy to see directly from Eq. (4) whether the
beam-size corrections for a round beam in a round pipe
vanish in all orders. However, one can check explicitly that
this is the case. Let us consider an arbitrary azimuthally
symmetric distribution of the beam charge l̃��r� � l̃�r�,
where the tilde in l̃ means that the argument of the dis-
tribution function l is shifted so that the vector �r now
originates from the beam center: l� �a 1 �r� � l̃��r�.

In this case, the integration in Eq. (1) for the cir-
cular pipe can be done explicitly. Namely, using the
expansion in Eq. (2) and integrating in polar coordi-
nates �r , w�, for the case when l̃�r , w� � l̃�r� one can
write
E�u� �
1

2pb

Z `

0
r dr l̃�r�

Z 2p

0

dw�b2 2 a2 2 r2 2 2br cosw�
b2 1 a2 1 r2 2 2ab cosu 1 2ar cosw 2 2br cos�w 2 u�

�
1

2pb

Z `

0
2pr dr l̃�r�

b2 2 a2

b2 1 a2 2 2ab cosu

�
1

2pb
b2 2 a2

b2 1 a2 2 2ab cosu
. (6)

The last expression follows from the preceding line due to the charge normalization, and it is exactly the field of a
pencil beam displaced from the chamber axis by �a � �a, 0�; compare Eq. (2). The only real effort here was to perform
092801-2
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FIG. 2. (Color) Beam position monitor (BPM) signal ratio (7) in
a circular chamber versus beam center position x�b for three ver-
tical beam offsets y�b � 0, 1�4, 1�2 (short-dashed line, dashed
line, long-dashed line, respectively) without beam-size correc-
tions (pencil beam, sx � sy � 0). The solid line shows the
linear part of the BPM response.

the angular integration, which turns out to be independent
of r . It was done analytically by introducing a new com-
plex variable z, cosw � �z 1 z21��2, and then integrating
along a unit circle in the complex z plane with residues.1

We now apply the above results for calculating signals
in a BPM. First, we assume that signals induced in BPM
electrodes (strip lines or buttons) are proportional to the
wall image current integrated within the transverse extent
of the electrode on the chamber wall. Such an assumption
is usually made in analytical treatments of BPM signals
(see, e.g., [1,2,4,5]) and is justified when the BPM elec-
trodes are flush with the chamber walls, grounded, and
separated from the wall by narrow gaps. Certainly, there
are some field distortions due to the presence of the gaps,
but they are rather small for narrow gaps. Moreover, even
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FIG. 3. (Color) Same as Fig. 2, but with sx�b � 0.2, sy � 0.

1Trying to perform this integration with MATHEMATICA, I found
a bug in its analytical integration package for this particular kind
of integral. Wolfram Research acknowledged the bug, and they
are working to fix it.
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FIG. 4. (Color) Same as Fig. 2, but with sx � 0, sy�b � 0.2.

for a more complicated BPM geometry with realistic strip
lines protruding inside a circular pipe, it was demonstrated
by measurements (see [5]) and by numerical 3D modeling
[6] that the effects of field distortions near the strip line
edges can be accounted for by integrating the wall cur-
rent within an effective transverse extent of the strip lines
(slightly larger than their width) in a simple smooth-pipe
model with the effective pipe radius taken to be an aver-
age of the strip line inner radius and the inner radius of the
beam pipe.

Consider now in a circular chamber of radius b a strip
line BPM with a pair of electrodes in the horizontal plane.
Let us assume that the strip line electrodes are flush with
the chamber walls, grounded, and have subtended angle f

per strip line. Following the discussion above, we neglect
the field distortions near the strip edges and calculate the
signals induced on the strip line electrodes by integrating
the field (5) over the interval 2f�2 # u # f�2 for the
right electrode �R� and over p 2 f�2 # u # p 1 f�2
for the left electrode �L�. The ratio of the difference be-
tween the signals on the right and left electrodes in the
horizontal plane to the sum of these signals is
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FIG. 5. (Color) Relative magnitude of beam-size corrections in
a circular chamber with sx�b � 0.1, sy�b � 0.2 for three ver-
tical beam offsets y�b � 0, 1�4, 1�2 (short-dashed line, dashed
line, long-dashed line, respectively). Here “1” corresponds to a
pencil beam case, i.e., to one of the three curves in Fig. 2 for
the corresponding beam vertical offset.
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0

R 2 L
R 1 L

� 2
x0

b
sin f�2

f�2

(
1 2

2
b2

sinf

f

≥
s2

x 2 s2
y 1 x2

0 2 y2
0

¥
1

1
b2

sin3f�2
3f�2

�s2
x 2 s2

y 1 x2
0�3 2 y2

0 �

2
2
b4

sin2f

2f
��s2

x 2 s2
y 1 x2

0 2 y2
0 �2 2 2x4

0 2 2y4
0 � 1

4
b4

√
sinf

f

!2

�s2
x 2 s2

y 1 x2
0 2 y2

0 �2

1
1
b4

sin5f�2
5f�2

�3�s2
x 2 s2

y �2 1 2�s2
x 2 s2

y � �x2
0 2 3y2

0 � 1 x4
0�5 2 2x2

0y2
0 1 y4

0 � 1 O�b26�

)
. (7)
The factor outside of the brackets in the rhs of Eq. (7) is
the linear part of the BPM response, so that all terms in
the brackets except one are nonlinearities and beam-size
corrections.

Corrections (7) are shown in Figs. 2–5 for a 60± strip
line BPM. Figure 2 shows the nonlinearities of the BPM
response for a pencil beam. The signal ratio changes are
noticeable when Figs. 3 and 4 for flat beams are compared
with Fig. 2. In Fig. 5, the ratio S�S0 is plotted versus the
beam center position. Here S is the difference-over-sum
ratio, �R 2 L���R 1 L�, for a finte-size beam, and S0 is
the same ratio for a pencil beam. One can see from Fig. 5
that, for a reasonable transverse beam size, the beam-size
corrections are on the level of a few percent.

III. VACUUM CHAMBER OF ARBITRARY CROSS
SECTION

Let us consider now a more general case of a homoge-
neous vacuum chamber with an arbitrary single-connected
cross section S. The field e��r, �b� produced by a pencil
beam at a point �b on the wall can be written as (see, e.g.,
[7,8])

e��r, �b� � 2
X
s

k22
s es��r�=nes� �b� , (8)

where s � �n, m� is a generalized (2D) index, =n � �= ? �̂n
is a normal derivative at the point �b on the region bound-
ary ≠S ( �= is the 2D gradient operator, �̂n means an outward
normal vector to the boundary), and k2

s , es��r� are eigenval-
ues and orthonormalized eigenfunctions of the following
2D Dirichlet problem in the region S:

�=2 1 k2
s �es��r� � 0; es��r [ ≠S� � 0 . (9)

The expansion (8) follows from the fact that

F��r 2 �a� �
X
s

k22
s es��r�es� �a� (10)
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is the Green function of the problem (9), which means that
it satisfies the equation

=2F��r 2 �a� � 2d��r 2 �a� . (11)

In other words, F��r 2 �a� is (up to a factor 1�´0) an elec-
tric potential created at point �r of region S by a unit point
charge placed at point �a. One can easily check that substi-
tuting the sum (10) into Eq. (11) gives, with the account
of (9), the correct result due to the following property of
eigenfunctions:

X
s

es��r�es� �a� � d��r 2 �a� . (12)

The eigenfunctions for simple regions such as a circle
or a rectangle can be found in electrodynamics textbooks
(see also the Appendix in Ref. [7]). For the circular case,
summing the corresponding Bessel functions in (8) leads
directly to the last expression in Eq. (2).

For a thick beam with a given transverse charge distri-
bution, one can write from Eqs. (1) and (8)

E� �a, �b� � 2
X
s

k22
s =nes� �b�

Z
Sb

�l��r�es� �a 1 �r� d �r ,

(13)

where again the tilde in l̃ means an argument shift in
the distribution function l, l� �a 1 �r� � l̃��r�, so that the
integration vector �r originates from the beam center �a.
Performing the Taylor expansion of the eigenfunction
es� �a 1 �r� around point �a,

es� �a 1 �r� �
X̀

m�0

��r �=�mes� �a��m!

� es� �a� 1 �r �=es� �a� 1
1
2

��r �=�2es� �a� 1 · · · ,

and integrating in (13) leads to the following multipole
series:
E� �a, �b� � 2
X
s

k22
s =nes� �b�

X̀
m�0

2X
i1�1

2X
i2�1

· · ·
2X

im�1

≠i1≠i2 · · · ≠im es� �a��m!
Z

Sb

d �r l̃��r�ri1ri2 · · · rim , (14)

where ≠i � ≠�≠ri , i � 1, 2, and all effects of the finite beam size here enter through the components of the multipoles
of the beam charge distribution.

If we restrict ourselves by considering only symmetric (with respect to two axis) charge distributions, i.e., assume
l̃�2�r� � l̃��r�, all integrals for odd m in (14) vanish, and the general expansion (14) can be significantly simplified:
092801-4



PRST-AB 4 NONLINEARITIES AND EFFECTS OF TRANSVERSE … 092801 (2001)

092
E� �a, �b� � e� �a, �b� 1
1
2

≠2
xe� �a, �b�

Z
Sb

d �r l̃��r� �x2 2 y2� 1
1
24

≠4
xe� �a, �b�

Z
Sb

d �r l̃��r� �x4 2 6x2y2 1 y4� 1 · · ·

� e� �a, �b� 1
X̀
n�1

≠2n
x e� �a, �b�M2n��2n�! . (15)
In obtaining the last expression, the following property
of the sum (14) was used: Flipping the derivatives,
≠2

yes� �a� � 2≠2
xes� �a�, inside the sum does not change the

result. This is due to ≠2
yes� �a� � 2�≠2

x 1 k2
s �es� �a� from

Eq. (9), and because any extra factor k2
s in (14) leads to a

zero sum since it just gives a derivative of the d function
[cf. (12)] with a nonzero argument because of �a fi �b (the
beam does not touch the wall).

Equation (15) is more transparent than (14). Let us take
a look at the moments in (15) in their closed form:

M2n �
Z

Sb

d �r l̃��r�

3 �x2n 2 C2n22
2 x2n22y2 1 C2n24

4 x2n24y4

2 · · · 1 �21�ny2n� , (16)

where Cn
k � n!��k!�n 2 k�!� are binomial coefficients. It

is useful to notice that the sum inside the square brackets in
(16) is simply Re��x 1 iy�2n�, and in the polar coordinates
of the beam Eq. (16) can be rewritten simply as

M2n �
Z

Sb

d �r l̃��r�r2n cos2nw . (17)

Now it is quite obvious that, if one assumes an arbitrary
azimuthally-symmetric distribution of the beam charge
l̃��r� � l̃�r�, i.e., l̃�r , w� � l̃�r�, all beam moments
(17) become equal to zero after the angular integration
and the corresponding beam-size corrections in (15)
vanish. Therefore, we proved a rather general statement:
The fields produced by an ultrarelativistic beam with an
azimuthally-symmetric charge distribution on the walls
of a homogeneous vacuum chamber of an arbitrary cross
section are exactly the same as those due to a pencil beam
of the same current following the same path. A particular
case of this statement, for a circular chamber cross section,
was proved by explicit calculations earlier (see Sec. II).

The physical explanation of this effect is simple. The
electric field outside the beam �E is a superposition of the
field due to the charge distribution itself, �Edis

vac, and the field
due to induced charges on the chamber walls, �Eind. From
801-5
the Gauss law, for an azimuthally-symmetric beam charge
distribution, the field �Edis

vac outside the beam (in vacuum,
without the chamber) is exactly the same as that of a pencil
beam, �E0

vac, if the last one has the same charge and travels
along the axis of the thick beam. Therefore, the induced
charge distribution on the wall will be identical for the
thick and pencil beams, and as a result the same will be
true for the total electric field outside the beam [9].

The expansion (15) for symmetric distributions of the
beam charge gives the beam-size corrections for an arbi-
trary chamber, as long as the beam charge distribution is
known. As two particular symmetric charge distributions
of practical interest, we consider a double-Gaussian beam
[cf. Eq. (3)],

l̃�x, y� � exp�2x2�2s2
x 2 y2�2s2

y���2psxsy� , (18)

and a uniform beam with a rectangular cross section
2sx 3 2sy ,

l̃�x, y� �
u�x 1 sx�u�sx 2 x�u�y 1 sy�u�sy 2 y�

4sxsy
,

(19)

where u�x� is the step function. The two distributions
l̃ above are written in the beam coordinates, with x �
y � 0 corresponding to the beam center, as discussed after
Eq. (5).

For the double-Gaussian beam (18), M2 � s2
x 2 s2

y ,
M4 � 3�s2

x 2 s2
y �2, etc., so that Eq. (15) takes the form

E� �a, �b� � e� �a, �b� 1
1
2

�s2
x 2 s2

y �≠2
xe� �a, �b�

1
1
8

�s2
x 2 s2

y�2≠4
xe� �a, �b�

1
1
48

�s2
x 2 s2

y�3≠6
xe� �a, �b� 1 O�s8� . (20)

Similarly, for the uniform beam with the rectangular
cross section (19), the corrections are
E� �a, �b� � e� �a, �b� 1
1
6

�s2
x 2 s2

y �≠2
xe� �a, �b� 1

1
40

µ
s4

x 2
10
3

s2
xs2

y 1 s4
y

∂
≠4

xe� �a, �b�

1
1

5040
�s6

x 2 7s4
xs2

y 1 7s2
xs4

y 2 s6
y �≠6

xe� �a, �b� 1 O�s8� . (21)

One can see that for a round beam, sx � sy , all corrections in (20) disappear as expected, and for a square beam
cross section in (20) the lowest correction is proportional to s4, while the next-order one is proportional to s8.

One should note at this point that the general field expansion (15) and Eqs. (20) and (21) derived above are essentially
092801-5
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the expansions in a small parameter s2�b2, where s is
a typical transverse beam size and b stands for a char-
acteristic transverse dimension of the chamber cross sec-
tion. The powers of 1�b are produced by the derivatives of
the pencil beam field e� �a, �b� in Eqs. (15), (20), and (21).
Therefore, these results are valid for any beam offset a,
large or small, no matter what the relation is between s

and a.
092801-6
Equations (15), (20), and (21) give us a rather good idea
about how the beam-size corrections enter into the field
expressions. The nonlinearities, however, are hidden in
the pencil-beam field e� �a, �b� and in its derivatives. We
can single out the nonlinearities in a manner similar to the
one used to obtain the beam-size corrections, by expanding
the field e� �a, �b� in powers of a around the chamber axis:
e� �a, �b� �
X̀

m�0

� �a �=�me�0, �b��m! � e0 1 �a �=e0 1
1
2

� �a �=�2e0 1 · · · ,
where the notation e0 � e�0, �b� was introduced for brevity,
and similarly for the derivatives. In the most general case,
unfortunately, it does not lead to convenient equations.
However, for vacuum chambers with some symmetry the
results can be simplified significantly. Here we limit our
consideration to the case of region S that is symmetric with
respect to its vertical and horizontal axes. If a pair of nar-
row BPM electrodes is placed on the walls in the horizontal
plane of such a two-axis symmetric chamber, the fields due
to a pencil beam at location �a � �x0, y0� on the right (R)
and left (L) electrodes do not change when y0 $ 2y0 (i.e.,
they are even functions of y0). Moreover, from the verti-
cal symmetry, L�x0, y0� � R�2x0, y0�. Using these prop-
erties, as well as the same trick ≠2

yes � 2≠2
xes as above

in the sum for derivatives of e0, we obtain the difference-
over-sum signal ratio of BPM signals in a rather general
form:
R 2 L
R 1 L

�
x0≠xe0

e0

Ω
1 1

1
2

≠3
xe0

≠xe0

µ
x2

0

3
2 y2

0 1 M2

∂
2

1
2

≠2
xe0

e0
�x2

0 2 y2
0 1 M2�

1
1
24

≠5
xe0

≠xe0

∑
x4

0

5
2 2x2

0y2
0 1 y4

0 1 2M2�x2
0 2 3y2

0� 1 M4

∏

2
1
24

≠4
xe0

e0
�x4

0 2 6x2
0y2

0 1 y4
0 1 6M2�x2

0 2 y2
0� 1 M4� 1 O�r6

0 �b6, s6�b6�
æ

, (22)
where the nonlinearities are shown explicitly as powers
of x0 and y0, and all beam-size corrections enter via the
even moments M2n of the beam charge distribution [cf.
Eq. (15)]. It still takes some effort to arrive at the particu-
lar case of Eq. (22) for the circular pipe, Eq. (7), but the
structure of corrections is rather clear.

We conclude our study of the general case with a remark
that the pencil beam field e� �a, �b� and its derivatives are
generally not easy to calculate, except for a few particular
cases. For a circular pipe, we know the explicit expression
(2) for e� �a, �b�. Another case where the eigenfunctions are
simple and the sums in Eqs. (15) and (22) can be worked
out relatively easily is a rectangular chamber.

IV. RECTANGULAR CHAMBER

Let us consider a vacuum chamber with the cross section
S having a rectangular shape with width w and height
h. The orthonormalized eigenfunctions of the boundary
problem (9) for region S are

en,m�x, y� �
2

p
wh

sinpn

µ
1
2

1
x
w

∂
sinpm

µ
1
2

1
y
h

∂
,

where 2w�2 # x # w�2, 2h�2 # y # h�2, and
n, m � 1, 2, . . . . Summing up in Eq. (8) for this case
gives us the field produced by a pencil beam,

e��r0, �b� �
X̀
m�1

sinpm

µ
h 1 y0

2h

∂
sinpm

µ
h 1 yh

2h

∂

3
2 sinhpm��w�2 1 x0��h�

h sinh�pmw�h�
, (23)

at point �b � �w�2, yh� on the right side wall. Should we
consider a left wall point instead, �b � �2w�2, yh�, the
only change in (23) would be the replacement x ! 2x
(see Sec. III for more general consideration of the sym-
metry). For points on the top or bottom walls, one should
exchange w $ h, x $ y, and yh $ xw in Eq. (23). Un-
like the circular pipe case, we are still left with a sum in
Eq. (23), but the series is fast (exponentially) converging
and convenient for calculations; e.g., see [7,8]. In particu-
lar, it is very easy here to calculate derivatives required in
Eqs. (15) and (20)–(22); ≠2

xe��r , �b� is given by the same
series (23), only with an extra factor �pm�h�2 in the sum.
In fact, for the particular charge distributions (18) and (19)
considered above, it is simple enough to perform the inte-
gration (1) directly using (23), which produces
092801-6
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E��r0, �b� �
X̀
m�1

sinpm

µ
h 1 y0

2h

∂
sinpm

µ
h 1 yh

2h

∂
2 sinhpm� w

2h 1
x0

h �
h sinh�pmw�h�

f

µ
pmsy

h

∂
F

µ
pmsx

w

∂
. (24)

The beam-size corrections in (24) enter as the form factors f�z�, F�z�. For the double-Gaussian charge distribution
(18), the form factors are f�z� � exp�2z2�2�, F�z� � exp�z2�2�, so that the correction factor in (24) takes the form

f

µ
pmsy

h

∂
F

µ
pmsx

w

∂
� exp

∑µ
pm
h

∂2 s2
x 2 s2

y

2

∏
.

Obviously, for an axisymmetric beam with sx � sy , the argument of the exponent vanishes, and the exponent is equal
to unity. As a result, the field (24) of a finite-size axisymmetric beam will be exactly equal to that of a pencil beam,
Eq. (23).

For the uniform rectangular distribution (19), the form factors are f�z� � sin�z��z, F�z� � sinh�z��z, and the resulting
correction factor is

f

µ
pmsy

h

∂
F

µ
pmsx

w

∂
�

sin�pmsy�h�
pmsy�h

sinh�pmsx�h�
pmsx�h

.

Expanding this expression in powers of s leads to the conclusion that the lowest beam-size corrections here have the
order of s4, as we already know from Sec. III.

As for BPM signals, the simplest way is to use the general result (22). For two strip line BPM electrodes of width h1
on sidewalls of a rectangular vacuum chamber w 3 h, the difference-over-sum signal ratio, up to the fifth order, is

R 2 L
R 1 L

� p
x0

h
S1

S0

Ω
1 1

p2

2h2

S3

S1

µ
x2

0

3
2 y2

0 1 M2

∂
2

p2

2h2

S2

S0
�x2

0 2 y2
0 1 M2�

1
p4

24h4

S5

S1

∑
x4

0

5
2 2x2

0y2
0 1 y4

0 1 2M2�x2
0 2 3y2

0� 1 M4

∏

2
p4

24h4

S4

S0
�x4

0 2 6x2
0y2

0 1 y4
0 1 6M2�x2

0 2 y2
0� 1 M4� 1 O�r6

0 �b6, s6�b6�
æ

, (25)
where M2, M4 are the moments of the beam charge distri-
bution defined above, and

S2n �
X̀
k�0

�2k 1 1�2n F�p�k 1 1�2�h1�h�
cosh�p�k 1 1�2�w�h�

,

S2n11 �
X̀
k�0

�2k 1 1�2n11 F�p�k 1 1�2�h1�h�
sinh�p�k 1 1�2�w�h�

,

0.05 0.1 0.15 0.2 0.25
x/w

0.2

0.4

0.6

0.8

1

(R
−L

)/(
R

+L
)

FIG. 6. (Color) BPM signal ratio (25) in a square chamber ver-
sus beam center position x�w for three vertical beam offsets
y�h � 0, 1�8, 1�4 (short-dashed line, dashed line, long-dashed
line, respectively) without beam-size corrections (pencil beam,
sx � sy � 0). The solid line shows the linear part of the BPM
response.
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for n � 0, 1, 2, . . . . The sums above include one more
form factor, F�z� � sinz�z, that accounts for the BPM
electrode width. For narrow electrodes, when h1 ø h, this
form factor tends to 1.

Corrections (25) are shown in Figs. 6–9 for a square
chamber, w � h, and a BPM with very narrow electrodes,
h1 � h�100 (in fact, results for h1 � h�10 are almost
identical). Figure 6 shows only the nonlinearities, which in
this case are practically the same for three different vertical
beam offsets. On the contrary, the beam-size corrections
here depend noticeably on the beam vertical offset, and
range from about 13% for y � 0 (the chamber midplane)

0.05 0.1 0.15 0.2 0.25
x/w

0.2

0.4

0.6

0.8

1

(R
−L

)/(
R

+L
)

FIG. 7. (Color) Same as Fig. 6, but with sx�w � 0.1, sy � 0.
092801-7



PRST-AB 4 SERGEY S. KURENNOY 092801 (2001)
0.05 0.1 0.15 0.2 0.25
x/w

0.2

0.4

0.6

0.8

1
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)

FIG. 8. (Color) Same as Fig. 6, but with sx � 0, sy�h � 0.1.

0.05 0.1 0.15 0.2 0.25
x/w

0.9

0.95

1

1.05

S
/S

0

FIG. 9. (Color) Relative magnitude of beam-size corrections in
a square chamber with sx�w � 0.1, sy�h � 0.05 for three ver-
tical beam offsets y�h � 0, 1�8, 1�4 (short-dashed line, dashed
line, long-dashed line, respectively). Here “1” corresponds to a
pencil beam case, i.e., to one of the three curves in Fig. 6 for
the corresponding beam vertical offset.

to less than 1% for y � h�8 to about 2�9 12�% for y �
h�4 (the beam is half way to the top wall), in the case of
sx�w � 0.1, sy�h � 0.05 shown in Fig. 9. Similar to
Fig. 5, in Fig. 9 S � �R 2 L���R 1 L� for a finite-size
beam, and S0 is the same ratio for a pencil beam, which
is plotted in Fig. 6. Therefore, S�S0 � 1 in Fig. 9 means
that there are no corrections due to a finite transverse beam
size. Again, as in the circular chamber, the beam-size
corrections for flat beams can be rather significant, as we
see from comparison of Figs. 7 and 8 with Fig. 6.

V. CONCLUSIONS

Nonlinearities and corrections due to a finite transverse
beam size in beam fields and BPM signals are calcu-
lated for a homogeneous vacuum chamber in the case
when the wavelength of interest is longer than a typical
transverse dimension of the chamber and/or the beam is
ultrarelativistic.

A general proof is presented that transverse beam-size
corrections vanish in all orders for any azimuthally
092801-8
symmetric beam in an arbitrary chamber. One should
emphasize that nonlinearities are still present in this case;
for a given chamber cross section, they depend only on the
displacement of the beam center from the chamber axis.
However, the nonlinearities are the same for a finite-size
axisymmetric beam and for a pencil beam (line source)
with the same displacement. Having a nonsymmetric
transverse distribution of the beam charge results in
additional (properly beam-size) corrections. They tend to
be minimal when the beam charge distribution is more
symmetric.

Explicit analytical expressions are derived for two
particular cases —circular and rectangular chamber cross
section — as well as for the particular beam charge
distributions —double-Gaussian and uniform rectangular
distribution.

While we have not discussed this subject in the present
paper, the calculated corrections to beam fields can be
directly applied in calculating beam coupling impedances
produced by small discontinuities of the vacuum chamber
using the methods of Refs. [7,8].
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