

SNS

Diagnostics Controls

LabVIEW and C/C++

Interface to

DatabaseAccess DLL

Reference

By: Lisa Day

day@lanl.gov

January 23, 2002

SNS Administrator
SNS-104050200-TD0025 - R00

1 Basics of SNS BPM Control Systems

The SNS Diagnostics Control System for the BPMs is based on PCI data
acquisition and control through LabVIEW Virtual Instruments running under
Windows 2000.

LabVIEW interfaces with the PCI card through calls to a Win32 acquisition DLL,
which uploads data from the PCI card into LabVIEW local acquisition variables.
After the data and timestamp is acquired, LabVIEW calls the DatabaseAccess
DLL to update the controls database, which is shared between all connected
client processes. Both of these DLLs have LabVIEW interface sub-VI’s available
for easily integrating the calls into main programs.

2 Overview of the DatabaseAccess DLL

The DatabaseAccess DLL, da.dll, maintains a memory resident database holding
control system data and accessible by client processes. The database contains
control points and acquired data for the local system. The DLL controls updates
and retrievals within database records providing clients with asynchronous
access to the database.

This document is intended to serve as a reference for interfacing client processes,
LabVIEW in particular, to the DatabaseAccess DLL. The following sections
describe the requirements for the integration of the DLL with LabVIEW sub-VI’s
and C/C++ calls.

3 Defining the Database

To minimize the operator’s complexity in defining the database, an Excel
spreadsheet, “daDbaseDef.xls”, is formatted for simple entry of record
definitions. The database is to be defined using the formatted Excel spreadsheet
(Figure 1) as a template and then saved to the tab-delimited text file
“daDbaseDef.txt”. A copy of the text file should be placed in the c:\\daDLL
directory.

 Total_recs 4

 Total_data_pts 31902

 EPICS_NAME CLIENT_NAME TYPE NELM DEFAULT_VAL

RECORD Bpm1_control control ao 1 0

RECORD Bpm1_acq_wid acquisition_width ao 1 50

RECORD Bpm1_filtered filtered_data ao 15900 0

RECORD Bpm1_raw raw_data ao 16000 0

Figure 1 : Formatted Excel template file for database definition.

NOTE: Do not modify or rearrange any cells contained in the spreadsheet except
those in the rows following the key words “RECORD”. To do so could cause the
DLL to fail during initialization.

DatabaseAccess parses the file based on key words. The first two rows in the
spreadsheet are formatted to automatically calculate the number of records and
data points contained within the database. The DLL determines the size for its
memory maps based on these values. The next row contains the record fields
supported. The DLL loads the records as defined by an operator by parsing the
remaining rows. For each record loaded, the DLL assigns an index number
(INDX) for directly accessing that record. This index can be retrieved and used to
reference records and often increases performance.

For more detail about how the DLL creates and loads its memory maps, see the
DatabaseAccess DLL documentation (which doesn’t exist).

4 Exported DLL Calls

4.1 General Features

The DatabaseAccess DLL exports functions for accessing the database record
fields and their values. These functions are callable by any DatabaseAccess client
process.

In short, the exported functions described throughout this document support the
following tasks:

¾ Updating and retrieving single point data and timestamps
¾ Updating and retrieving multipoint waveform data and timestamps
¾ Retrieving specific record field values

• Client reference identification (LabVIEW variable name)

• EPICS process variable name

• DLL assigned index number

• Number of data elements supported for record

For ease of integration, the DLL is able to identify records with any one of three
reference id fields:

EPICS_NAME: PV name to be served by Channel Access.
CLIENT_NAME: Local LabVIEW, or other client, name.
INDX: Assigned by DLL during database load.

Routines are available to retrieve the id’s given one known reference. Retrieving
the INDX field during initialization and then using the INDX number during run-
time is the most time efficient method for referencing any database record.

4.2 C++ Exported Function Declarations

The following is a list of the exported functions from the DatabaseAccess DLL,
including parameters and return values.

The six functions following provide general information about the DLL, some
lists of database contents, and available commands. They are primarily used
for debugging from the command prompt. Although they do not cause the DLL
to modify its memory maps, I/O routines, such as printf, are called:

void help();
double about ();
void clientList ();
void epicsList ();
void dbList ();
void mutexList ();

The ‘get’ and ‘put’ functions following are exported to provide asynchronous
access to the database:

short epicsPut (char *recName, double *newVal, double *tstamp, int nelm);

short clientPut (char *recName, double *newVal, double *tstamp, int nelm);

short dbPut (short *index, double *newVal, double *tstamp, int nelm);

short epicsGet (char *recName, double *newVal, double *tstamp, int nelm);

short clientGet (char *recName, double *newVal, double *tstamp, int nelm);

short dbGet (short *dbIndex, double *newVal, double *tstamp, int nelm);

short epicsGetNelm (char *recName, int *nelm);

short clientGetNelm (char *recName, int *nelm);

short dbGetNelm (short *index, int *nelm);

short clientGetRefs (char *clientName, char *epicsName, short *index);

short dbGetRefs (char *clientName, char *epicsName, short *index);

4.3 LabVIEW Interface VI’s

A set of sub-VI’s has been configured with calls to the exported functions for
ease of integration into LabVIEW programs. A LabVIEW programmer can
insert these sub-VI’s into his program and wire, or link, local variables as
required.

As previously mentioned in 4.1, the DLL identifies records by any one of three
reference id fields. Using the INDX field whenever possible is recommended to
directly index records and reduce search time.

The following sections describe the LabVIEW sub-VI’s, including the VI’s icon
and the wiring links required for the DLL call. Note that LabVIEW name is
specified when referring to the CLIENT_NAME field.

Common Attributes Shared by All sub-VI’s

All sub-VI calls maintain the same return value convention.

¾ RETURN VALUE:

• Error status – greater than zero (>0) for success

GET Reference Identification Fields

Retrieve the two unknown reference id fields for the record specified.

 DaGetRefsByName
Given the LabVIEW variable name, or other client reference, retrieve the
EPICS PV name and the DLL INDX number.

¾ INPUT:

• LabVIEW variable name (client reference)
¾ OUTPUT:

• EPICS process variable name

• DLL index number

 DaGetRefsByIndx
Given the DLL INDX number, retrieve the EPICS PV name and LabVIEW
name (or client reference).

¾ INPUT:

• DLL index number
¾ OUTPUT:

• EPICS process variable name

• LabVIEW variable name

GET Single Point VALues

Retrieve the record’s single point data value and associated time stamp.

Common Output
¾ OUTPUT:

• Data VAL

• Time stamp

 DaGetValByName
¾ INPUT:

• LabVIEW variable name

 DaGetValByIndx
¾ INPUT:

• DLL index number

PUT Single Point VALues

 DaPutValByName
¾ INPUT:

• LabVIEW variable name

• Data VAL

• Time stamp

 DaPutValByIndx
¾ INPUT:

• DLL index number

• Data VAL

• Time stamp

GET Multi-point Data Array (or Waveform)

Retrieve an N element data array and its associated time stamp. Client
processes can request any number of data points up to the default NELM
specified in the database definition file. The DLL will retrieve the requested
number of elements unless that number:

Î Equals zero (=0)
Î Less than zero (<0)
Î Greater than NELM (>NELM)

Under these conditions, the DLL will retrieve its default NELM for that
record.

Common Attributes
¾ OUTPUT:

• Data array

• Time stamp

NOTE: Memory access errors may occur if initialized arrays passed in are not
large enough to contain all of the retrieved data.

 DaGetArrayByName
¾ INPUT:

• LabVIEW variable name

• Number of elements to retrieve (N)

• Initialized array of size N

 DaGetArrayByIndx
¾ INPUT:

• DLL index number

• Number of elements to retrieve (N)

• Initialized array of size N

PUT Multi-point Data Array

Retrieve an N element data array and its associated time stamp. Client
processes can request any number of data points up to the default NELM
specified in the database definition file. The DLL will retrieve the requested
number of elements unless that number:

Î Equals zero (=0)
Î Less than zero (<0)
Î Greater than NELM (>NELM)

Under these conditions, the DLL will retrieve its default NELM for that
record.

 daPutArrayByName
¾ INPUT:

• LabVIEW variable name

• Array containing acquired data

• Time stamp

 daPutArrayByIndx
¾ INPUT:

• DLL index number

• Array containing acquired data

• Time stamp

GET Default Number of Elements (NELM)

The NELM field for a record is most commonly needed for a parameter when
retrieving and updating data arrays.

Common Attributes
¾ OUTPUT:

• Record’s default NELM

DaGetNelmByName
¾ INPUT:

• LabVIEW variable name

DaGetNelmByIndx
¾ INPUT:

• DLL index number

	Basics of SNS BPM Control Systems
	Overview of the DatabaseAccess DLL
	Defining the Database
	Exported DLL Calls
	General Features
	C++ Exported Function Declarations
	LabVIEW Interface VI’s
	Common Attributes Shared by All sub-VI’s
	GET Reference Identification Fields
	GET Single Point VALues
	PUT Single Point VALues
	GET Multi-point Data Array (or Waveform)
	PUT Multi-point Data Array
	GET Default Number of Elements (NELM)

