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SNS Linac Los Alamos

Assignment: Physics Design of the 
Complete SNS Linac

• End-to-end beam physics design
– from the MEBT to the HEBT

• Design all room-temperature cavities
– SRF cavity design contracted to INFN, Milano

• Detailed beam performance simulations
• Define mechanical requirements & tolerances
• Define rf power & control requirements
• Define magnet & diagnostics requirements
• Develop commissioning scenarios 
• Participate in beam commissioning (?)
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Linac Performance Specs are Still a 
Moving Target

• Room temperature design Oct 99
– 2 MW, 1 GeV & 56 mA peak current

• Superconducting Design March 00
– 2 MW+, 1.3 GeV & 52 mA

• Reference Design June 00
– 950 MeV & 52 mA

• Cost Constrained Design Dec 00
– 600 kW, 840 MeV & 37-51 mA

• Design is converging to consistent upgradable scenario
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Some Reference Design Constraints

• Frequency = 402.5 & 805 MHz
• Linac shall be predominately SRF
• Ipeak= 1 - 52 mA
• Wfinal upgradable to 1.3 GeV
• Beam duty factor = 6%
• εinitial ≈ 0.20 π mm mrad (rms, norm) at 2.5 MeV
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Some Reference Design 
Performance Criteria

• Wfinal= 840 - 1300 MeV
• Wfinal stability < ±2.2 MeV
• Wfinal spread  < ±0.33 MeV (rms)
• εfoil < 0.50 π mm mrad (rms, norm)
• Beam centroid stability at foil < ±0.2 mm
• Beam loss < 1 W/m
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Reference Linac Architecture 
Summary

Structure W final

Total
Length

Cells
per

Cavity

Cavities
per

Module
Modules

No of
Klystrons

Structure
Length

MeV m m
DTL 86.8 36.6 60 to 21 6 6 36.6
CCL 185.6 91.9 8 12 4 4 55.4
SRF I 378.8 157.7 6 3 11 33 64.2
SRF II 968.6 276.0 6 4 15 59 118.4

   SRF upgrade 1248.4 323.4 6 4 6 25 47.3

Structure HVPS
HVPS
Power Transmitters Klystrons

Klystron
Power

MW MW
RFQ & DTL 3 10 7 7 2.5

CCL & HEBT 5 10 6 6 5.0
SRF I & II 8 10 16 92 0.55

 SRF upgrade 3 10 5 25 0.60
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Some Normal Conducting Linac 
Design Features
• DTL at 402.5 MHz

– All permanent magnet quadrupole focused, constant GL, sorted
– 6 βλ402.5 focusing period, FF0DD0 lattice
– Steering dipoles & diagnostics in empty drift tubes
– 1 βλ between tanks to minimize mismatches
– Beam is adiabatically matched longitudinally 

§ E0 ramped in tanks 1, 2 & 6
§ φs ramped down in tank  6

• CCL at 805 MHz
– 13 βλ805 focusing period matches phase advance in DTL
– Quads are ramped down in module 4 to match phase advance in 

SRF + matching
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SRF Design is Based on 2 Cavity βs

• Emax≤ 27.5 MV/m, peak surface electric field
• Optimized for cost with 2 β cavities

– 3rd lower-β cavity would be too numerous, inefficient & costly

• β1 ≡ 0.61
– based on earlier 2-cavity optimization studies by Wangler & Nath
– 5 MW CCL modules coarsely quantize initial energy

• 0.74 ≤ β2 ≤ 0.82
– higher β provides more efficient acceleration

§ i.e. higher E0, T & Lcav

– if Emax > 〈Emax〉, higher β supports a higher W final

• Transition energy
– maximized final energy for fixed cost machine
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SRF Linac Reference Design 
Assumes Emax=27.5 MV/m
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Beam Consumes 75% of 
Available rf Power 
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SRF Phase & Amplitude Set-Points 
Preserve Longitudinal Dynamics

• Emax determined at acceptance for each cavity
– 〈E0〉 ≈ Edsn±10%

• Calibrate cavity field probes
– using drifting beam to excite cavities

• E0,operating established for each cavity
• Corresponding φoperating derived for each cavity

– preserving longitudinal dynamics
– holding k0,l constant
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<Emax>=27.5 ± 10% 
Cavities will not be Sorted
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Most Efficient Part of the Linac is 
Limited by the Installed rf Power
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Wfinal is a Function of Cavity Quality
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Better Cavities & Alternate Phase Laws 
May Improve Truncated Design
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Energy is Limited by Beam Current 
at Higher Gradients
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Some Reference Design 
Performance Criteria

• Wfinal = 840 - 1300 MeV
• Wfinal stability < ±2.2 MeV
• Wfinal spread  < ±0.33 MeV (rms)
• εfoil < 0.50 π mm mrad (rms, norm)
• Beam centroid stability at foil < ±0.2 mm
• Beam loss < 1 W/m
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Typical Beam Profile, All Errors 
Except Quad Displacements
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Energy Jitter is a Function of RF 
Control Tolerances & Meets Spec.
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∆W is a Function of Space Charge & 
Corrector Voltage & Meets Spec.
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rms Emittance Profiles With & Without 
Errors, Excluding Misalignments
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Transverse Jitter at the Foil is a Function 
of Quad Vibrations & Meets Spec.
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Beam Phase-Space Projections at the 
Foil

-10 -8 -6 -4 -2 0 2 4 6 8 10
x (mm)

-2

-1

0

1

2

x'
 (

m
ra

d)

-10 -8 -6 -4 -2 0 2 4 6 8 10
y(cm)

y'
 (

m
ra

d)

-10 -8 -6 -4 -2 0 2 4 6 8 10
x (mm)

-10
-8
-6
-4
-2
0
2
4
6
8

10

y 
(m

m
)

-60 -40 -20 0 20 40 60
φ (°)

-0.6

-0.4

-0.2

-0.0

0.2

0.4

0.6

W
 (M

eV
)



SNS Linac Los Alamos

Radial Particle Distribution at the Foil 
with Errors
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Beam Spill Induced Activation:
Dose Rate at 1 ft after 4 Hours
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Beam Loss Mechanisms

• Gas Stripping
• Magnetic Stripping
• Longitudinal beam loss

– poor MEBT matching
– turn-on transients
– dynamic phase & amplitude errors
– static (mistuned) modules (φ & amp.)

• Transverse beam loss
– misalignments & missteering
– halo

§ initial beam distribution
§ poor MEBT matching
§ other mismatches
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Issues of Concern to ASAC: 
SRF Cavity Tilts

• “Possibility of significant beam dynamics sensitivity to cavity tilt errors”
– cavities fields will be tuned flat during fabrication
– field tilts will result from squeezing the asymmetric cavities to 

correct their frequency at 2 K 
• Mechanical analysis will predict the expected field tilts
• Drifting-beam field calibration can only detect E0, the average axial 

cavity field 
– the tuning algorithm sets the average cavity phase
– a tilt could result in a different final energy and effect the 

longitudinal focusing
• Typically cell-by-cell simulations with very large phase slips yield the 

same dynamics as cavity simulations using average field values
• This effect is expected to be small compared to the uncertainty in E0
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Issues of Concern to ASAC: 
DTL Adjustable Quadrupoles

• “… give serious consideration to incorporation of 
electromagnetic quadrupoles”
– “PMQs are not conservative & don’t provide tunability or flexibility”
– Couldn’t accommodate alternate quad laws developed later
– Presumably couldn’t correct mismatches

• This may be good advice coming too late
– 400 MHz frequency choice precludes EMQs in the drift tubes
– techniques for correcting mismatches are yet to be identified
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Trim Quadrupole Proposal

• We have investigated a variety of variable quad designs
– the liability of any of these designs could not justify any added 

flexibility

• DTL focusing lattice is FF0DD0
– every 3rd drift tube is empty
– most have been reserved for dipoles and diagnostics

• We propose to incorporate low gradient (~10% nom.) EMQs in 
some of the remaining empty drift tubes
– lattice would become FFfDDd
– two such periods would give us the flexibility to correct any 

mismatch if detectable
– It would not accommodate alternate quad laws
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We Plan to Submit a Project Change 
Request

• Design a trim quad & drift tube 
• Prototype a trim quad
• Field map the prototype

– ASAC has expressed concern over the field quality of short 
magnets

• Pursue studies to identify techniques for identifying and 
correcting mismatches in the DTL

• Assuming positive results we would either 
– shelve the design or 
– build ~16 drift tubes containing trim quads

• When the day comes that we believe we can improve the linac 
performance, they would be installed
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Issues of Concern to ASAC: 
Simulation Codes

• “A detailed comparison of codes, including interpretation of 
results in a physics framework, must be done.”
– “committee members are aware of issues in most extant versions 

of PARMILA that is used extensively.”
– “Concerns with PARMILA have led other groups to write their own 

codes.”
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PARMILA is a Very Well Established 
Design & Simulation Code
• It has benefited from close scrutiny by many experts for many 

years
• It has been used to design many successful linacs
• There are indeed extant flawed versions in the community
• Its distribution is now controlled in an attempt to correct this

problem
• The physics from PARMILA has been incorporated into other 

codes
• We welcome and solicit its comparison of other codes

– PARMILA has served as the reference against which many codes 
have been compared over the years

– all comparisons to date support its accuracy

• There are presently no known “errors” in the distribution version
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End-to-End Beam Dynamics Simulations 
are Confirmed by Multiple Codes 

• 4-D “Waterbag” distribution enters the RFQ
• RFQ beam dynamics calculated by:

– PARMTEQ: multiparticle space based &
– TOUTATIS: multiparticle time based

• Linac beam dynamics 
– MEBT, DTL, CCL, SRF & HEBT
– PARMILA is the design code
– PARMILA, PARMELA, LINAC, PARWIN & IMPACT calculate 

multiparticle beam dynamics
– LTRACE calculates envelope dynamics
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PARMELA is Our Most Detailed Simulation 
Code 

• PARMELA : Phase & Radial Motion in Electron Linacs
– time step integration
– composite E & H fields
– 2.5-D & 3-D space charge
– Er, Ez & Hθ field map computed by SUPERFISH
– <1M particle typical

• IMPACT
– hybrid: integration + impulse approx.
– 3-D space charge
– assumes linear expansion for off-axis fields in the gap
– 1-10M particle typical (could run 108)
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PARMILA is Our Design and Primary 
Simulation Code 
• PARMILA : Phase & Radial Motion in Ion Linacs

– designs integrated linacs incl. DTLs, CCLs, CCDTLs & SRF 
– impulse approximation
– 2.5-D & 3-D space charge
– gap transformation includes transit time integrals T,T’, S & S’
– off-axis fields derived using Bessel-function expansions
– 100k - 1M particle typical

• LINAC : a proprietary code similar to PARMILA
– written for CCLs but extended to DTLs & SRF
– Dynamics similar to PARMILA
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PARWIN is the French Windows “Version” 
of PARMILA 

• PARWIN : PARMILA for Windows
– design & simulation functions in separate codes
– designed to be compatible with PARMILA
– dynamics nominally copied from PARMILA
– 2.5-D & 3-D space charge
– 10k - 1M particle typical
– assumes sinusoidal SRF cavity fields for design studies
– now includes complete SRF cavity fields a la PARMILA
– flexible and user friendly
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Code comparisons:
Preliminary Results
• All 5 codes can now simulate the entire SNS linac
• Differences between 2.5- & 3-D space charge are very small for 

the reference distributions (100k RFQ output)
• All but IMPACT agree on the emittance growth

– IMPACT shows an extra ~10% growth in DTL Tank 1

• Primary differences between the 5 codes
– speed of execution
– 2.5 & 3-D space charge, minor differences in method of field 

calculation
– time integration vs. impulse approximation
– number of particles in the calculation 
– characterization of gap fields
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“SCHEFF & PICNIC show significant difference 
in orientation of the Y-Y’ phase plane”
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Our Primary Space Charge Concern 
is not Orientation but Halo
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Simulations Differ at the 100 nA Level 
in the Distribution but not in the Extent
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Small & Large Distributions Yield 
Consistent Results

0 1 2 3 4 5 6 7 8 9 10

R (mm)

10-1.0

100.0

101.0

102.0

103.0

104.0

105.0

106.0

2
3
5
6

2
3
5
7

2
3
5
7

2
3
5
7

2
3
5
7

2
3
5
7

2
3
5
7

I (
nA

m
p)

10-1.0

100.0

101.0

102.0

103.0

104.0

105.0

106.0

2
3
5
6

2
3
5
7

2
3
5
7

2
3
5
7

2
3
5
7

2
3
5
7

2
3
5
7

2
3
5
6

2
3
5
7

2
3
5
7

2
3
5
7

2
3
5
7

2
3
5
7

2
3
5
7

σ = 2.61 mm
PICNIC  3D

50 k
1 M

1.25 GeV

6-D waterbag

SRF only , no errors



SNS Linac Los Alamos

IMPACT Assumption of Linear Fields 
May Not be Accurate Enough
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Gap Fields in DTL Cell 1
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Issues of Concern to ASAC

• “Physics design has not been presented in framework of space-
charge physics.”
– i.e. “tunes” as a function of current and energy

• Presentations have not addressed “the behavior of the beam 
edges at the required levels of 10-4 - 10-8”
– “bring in new semi-analytical or simulation approaches to 

understand halo”
– “brute force running of simulation codes and simplistic evaluation”

• Recommend
– reaching out to partner labs for contributions
– sponsor workshops
– engage consultants
– write about our work
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Los Alamos Response to 
Recommendations
• Space-charge framework

– tune space can be presented
– “understanding halo” is still an open issue and beyond the scope of our 

assignment

• Required levels of 10-8

– impractical & unbelievable but see distribution plots

• Recommendations
– hosted HEBT interface workshop
– expanded existing collaboration with Saclay linac group
– hosted beam dynamics workshop in November, next scheduled for Spring
– involved ORNL staff in commissioning studies in mentoring role
– developing consulting contracts with R. Jameson, JM. Lagniel & I.Hoffman
– ~10 papers at PAC
– teach “Introduction to Linear Accelerators” at the USPAC
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Linac Design is Mature

• DTL Physics design is complete
– Field stabilization scheme demonstrated
– PCR to be submitted for EMQs
– Design drawings in process

• CCL Physics design is complete
– Cavity geometry finalized

§ details being incorporated into mechanical design
– Bridge-coupler details under study
– Hot-model in fabrication

• SRF Reference design is complete
– Cavity layout is frozen
– Investigating alternate phase & quad laws
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Linac Interfaces are Mature

• MEBT-DTL: dimensions are frozen, matching is complete 
• DTL-CCL: dimensions are frozen, matching is complete 
• CCL-SRF:   dimensions are frozen, have a matched solution

– modified phase law under study

• SRF β1-β2: have a matched solution
• SRF-HEBT: overall length frozen

– transport design defrosted & refrozen at 840 MeV
– end-to-end simulations underway
– energy corrector/spreader cavity-physics design complete



SNS Linac Los Alamos

Status of Linac Design & Beam 
Simulation Studies

• Steering algorithms have been selected
• Dipole & BPM locations identified
• Algorithms incorporated into simulation codes
• Error studies underway
• DTL & CCL phase & amplitude set-point algorithms under study
• Code comparisons under study
• Mismatch studies pending
• Full error set pending rf tuning algorithms
• Next beam dynamics workshop scheduled in Spring


