
Spare Cryomodule and Facilities Status

J. Mammosser

Outline:

- Status of Spare Cryomodules
 - Qualification of cavities at Jefferson Lab
 - Understanding Performance Limitations
 - Design Status
 - Where we stand with the new design
 - Remaining Procurements
 - Building first HB Spare in the RFTF
- Applying what was learned at Jlab to PUP

Facilities Status and Plans

- Status of Plasma Cleaning Development
- PUP Facilities Plans

Qualification of cavities at Jefferson Lab

• Since Last Review :

- Helium vessels were added to 4 HB cavities (HB53,54,56,58)
- These cavities were then shipped to Jefferson Lab for qualification testing (6 month effort)
- Goal was to reduce field emission at the design operating gradient for all four cavities
 - Vertical test data has traditionally not been a good indicator of module performance due mainly to field emission limiting the collective gradients of all installed cavities
 - Since the original SNS production, Jlab has significantly improved their procedures and processes
 - Jlab results have significantly reduced and eliminated field emission for most beta =1 cavities

- This was not the case for the four HB cavities !!

Understanding The Vertical Test Performance Limitations:

- What We Found Was:
 - Pulse tests show clear evidence of multipacting to cavity limits in some cavities and not cleaning up
 - Field emission during these tests was still unpredictable like the original production
 - HB54 showed repeatedly high levels of x-rays, additional process steps taken had little or no effect
 - Additional BCP chemistry
 - Additional degreasing and extended high pressure rinses
 - HB53 field emission onset reduced significantly in gradient and was not effected by additional cleaning steps
 - Additional degreasing and high pressure rinses
 - Both cavities had extensive internal inspections after each test

Additional Cavities Showed Similar Behavior:

- After close inspection of additional cavity tests HB74 and HB57 showed similar behavior to HB53 and HB54 respectively
 - HB57 had very high field emission
 - HB74 showed identical behavior to HB53, reduced onset of field emission
- HB57 was modified prior to testing to remove HOM hooks
 - After BCP cavity suffered from high radiation during testing
 - After horizontal EP , radiation significantly reduced and gradient went to highest HB performance 23MV/m

Understanding The Vertical Test Performance Limitations:

- Internal inspections found that :
 - Cell surfaces were rather normal looking and no "smoking gun" defects were identified
 - Mode Analysis all pointed to end cells and end group
 - The end-groups were extremely rough in appearance and to the touch
 - End-group history reactor grade material RRR40, was formed into their final shapes and then were heat treated at 1250C for 6 hours to improve the RRR
 - Visual inspection showed very sharp edges and features all the way up to the first iris
 - BCP was increasing the roughness of the end groups
 - Surface roughness increases the difficulty in cleaning end group surfaces (Including HOM coupler)

- This became the biggest suspect for why field emission and MP

⁶ Managed for the Utor the Best two cavities was not decreasing!!

Endgroup Roughness

Cells have normal surface finish

Rough Surface to the First IRIS

Understanding The Vertical Test Performance Limitations:

- The only option at this point was to try electropolish due to (helium vessel) processing limitations
 - Additional BCP did not improve performance
 - Grinding was not an option due to Q-disease risk
- The JLab horizontal EP setup was unavailable for these cavities due to Helium Vessel
- Vertical EP was only option
 - Inexpensive setup was built to perform the processing
 - Helium jacket was utilized to provide cell cooling

Vertical EP Results:

- What was learned:
 - First attempts with full (traditional style) cathode showed that the hydrogen gas bubbles were filling the end-group and causing excessive etching not polishing in the upper endgroup

– HB54

- Oscillations were small during processing
- Results : HB54 had reduced gradients and showed field mission
- Cavity limited to 12 MV/m
- A second manual cleaning of the end groups +HPR improved the gradient and field emission (13MV/m)

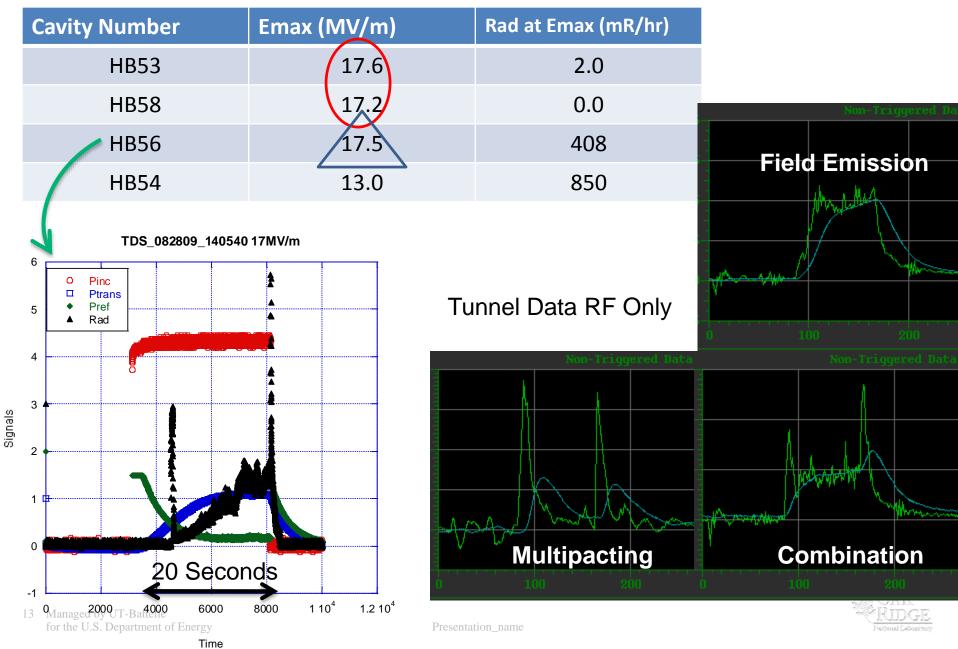
Vertical EP Results:

- Partial cavity polishing was performed next to reduce hydrogen gas, moving cathode two cell at a time
 - HB53
 - Oscillations were large during processing (what is expected)
 - Results: HB53 recovered to 17.5MV/m low field emission (what we wanted)
- Processing stopped at this point to proceed with the first spare cryomodule
 - Cryomodule assembly team is in place!!!
 - 3 of 4 cavities low field emission and good gradients, HB54 about average of installed HB gradients
 - String assembly is underway!

HB53 Recovery With VEP

Test Number	Process	Max Gradient (MV/m)	Max Rad at Emax (mR/hr)
HB53	50um BCP+HPR	18.0	2.0
HB53a	20um BCP+HPR	11.0	8150
HB53b	US+HPR	9.5	902
HB53c	30umVEP+US+HPR	17.6	1.5

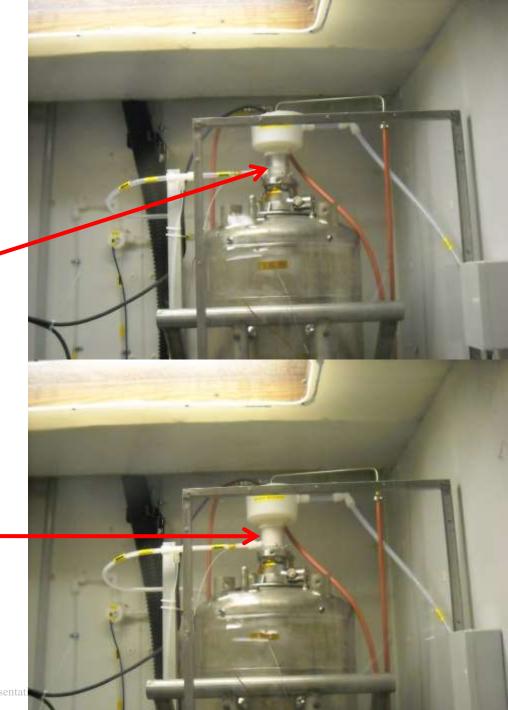
- Cavity showed reduced performance after additional BCP
- Reduced radiation after additional HPR
- Full recovery of original performance after vertical EP


HB54 Reduction of Field Emission with VEP

Test Number	Process	Max Gradient (MV/m)	Max Rad at Emax (mR/hr)
HB54	50umBCP+HPR	19.4	2166
HB54a	40umBCP+HPR	19.0	15166
HB54b	50umBCP+HPR	12.6	4633
HB54c	US+HPR 27hrs	15.9	49000
HB54d	30umVEP+US+HPR	12.0	850

- Additional BCP increased radiation significantly
- Additional BCP gradient reduced significantly
- Extended HPR significantly increased radiation
- Vertical EP reduced radiation , gradient not fully recovered

Summary of Cavity VTA Performance:


HB54 PROCESSING SETUP

330

Hydrogen Gas **Bubbles During** Processing

With power off acid level and flow shown here

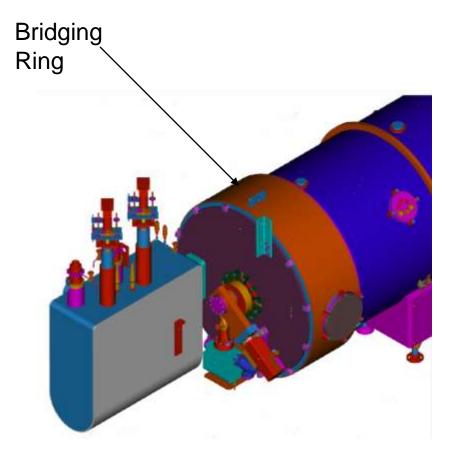
With power on top beampipe completely filled with gas and no flow, temperature on cavity endgroup was >35C and rising

Summary of Cavity Processing Effort:

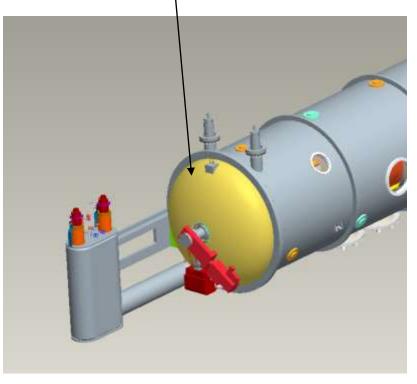
- We demonstrated direct correlation between VTA and operational data in the machine
- We suspect that the end-groups are the cause of many of the cavity performance issues
 - Multipacting
 - Field Emission
- Electropolishing is the best option for the spare cavities and should give new cavities additional gradient margin
 - Reduces field emission consistently
 - However we can not ensure end-group performance statistically with the spare cavities

Design Status:

- Much progress has been made on the new cryomodule design!
 - Design was informally reviewed by Jlab engineering group in December 09
 - Next step is a external design review (Feb 11-12) before procurement of vacuum vessel and end cans
- Design Strategy:
 - Pressure Boundary Set to Vacuum Vessel and End-Cans
 - This will allow for fabrication, testing and procurement of pressure stamped subcomponents
 - Some minor improvements were implemented in the design
 - 2 Additional pressure reliefs will be added

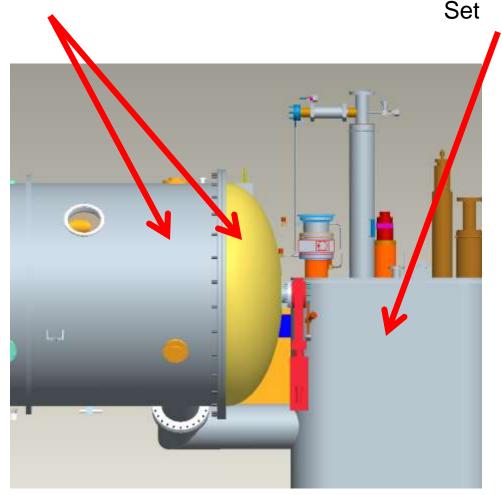

Remaining Procurements:

- Supply and Return End Cans
 - These will be produced in industry, pressure tested and code stamped
- Vacuum Vessel
 - This will be produced in industry, pressure tested and code stamped



New Design:

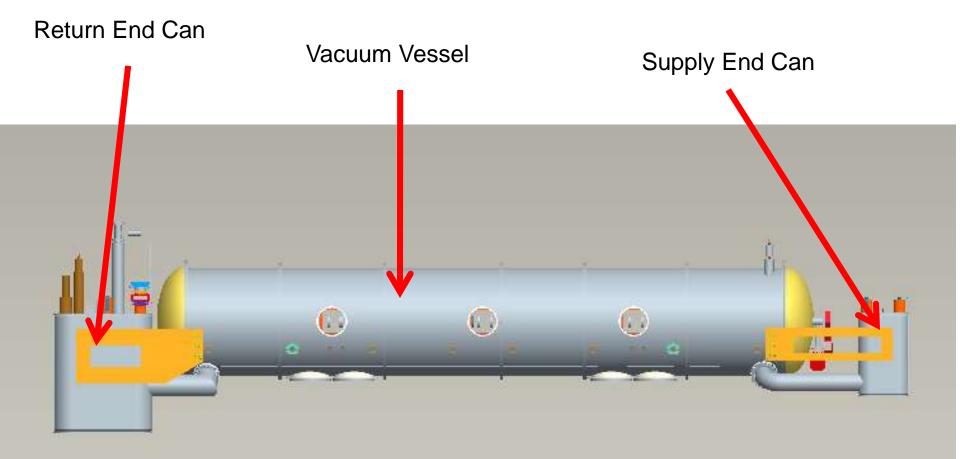
• Removed Bridging Ring and Added an Elliptical Head


Old Design

New Design

Pressure Stamped Subcomponents for Industrialization:

Vacuum Vessel and Dish Head Fabricated as a Set Supply and Return End Can Fabricated as a Set



Presentation_name

Side View of New Design:

Building The First Spare In the RFTF:

- Team is excited and ready to go!!
 - Personnel Identified for
 - Instrumentation
 - Cleanroom Assembly
 - Alignment
 - RF Measurements
 - Module Assembly
 - QA
 - RF Testing

Facility Preparation for String Assembly Underway

RFTF Facilities

- New DI Water System
 - Commissioned and operational
 - Cavity Degreasing Operational
- HPR
 - Niowave completed cabinet fabrication
 - Instrumentation design complete
 - HPR pump installed
- Vertical Test
 - Overhead Crane installed
 - Reevaluating location of vertical Pit
 - Radiation analysis completed
- Separate Refrigerator and Distribution Box in Progress
 - Supporting Vertical and Horizontal Testing

Plasma Cleaning Facility Progress:

- Plans are to develop plasma cleaning with four new research tools
 - Plasma oven for small sample evaluation
 - TM020 cavity for witness plate RF testing
 - 3-Cell MB Cavity (MB3C)
 - 6 Cell HB Cavity
- TM020 Cavity
 - Subcomponents Fabricated
 - Needs EB welding to complete cavity

Need Minimum Capability for Chemistry

Plasma Cleaning Facility Progress:

• MB3C

- Cavity modified to remove HOM flanges
- Cavity Processed by Vertical EP
- Currently undergoing baseline testing at JLab

Conclusion:

- Cryomodule Preparation and String Assembly is Underway
 - Staffing and roles identified
 - Processing Completed for the first spare cavities
- Cryomodule Design Completed
 - External Review Next Week
- Facility Preparation in Progress

Preparations for Plasma Processing Development Underway

