Ring Beam Dynamics Progress Report

Sarah M. Cousineau

Outline

1. Lattice and optics

- Twiss beta measurement
- Chromaticity measurement
- 2. High Intensity Effects
 - Space charge
 - dilution, broadening
 - intensity dependent transverse coupling
 - e-p instabilities
 - threshold studies
 - Iongitudinal shape studies
 - production beam observations

Beta Function Measurement

- Previous MIA based approach showed significant beta beating and large difference from design in certain regions.
- Used trim quads to do an independent measurement of beta.

$$\beta = \pm 4 \pi \frac{\Delta Q}{\Delta k l}$$

Measurement of Ring Beta Function

• Deviation from design <= 15%.

4

• There is a discrepancy with MIA based measurement.

Chromaticity

• Chromaticity was measured in the range of natural to zero.

Measured

via BTF

• From coasting beam theory:

m = Mode $\eta =$ Slip Factor (-0.2173)

Measure independently.

Chromaticity Measurement

• Measurements agree well with MAD predictions.

6 Managed by UT-Battelle for the U.S. Department of Energy

Courtesy R. Hardin, T. Pelaia

Part II: Collective Effects

• Presently the ring intensity is not limited by collective effects. However, collective effects strongly influence the final particle distribution.

Working Tune Range

High Intensity Profile Dilution

Measured Profiles (March 2011, WS20)

- Significant profile dilution by 1e13 ppp.
- Diluted profile is more ideal for target, e.g. painting scheme is appropriate.
- No discernable tails.

Emittance vs. Intensity

Horizontal Emittance vs. Intensity

rms emittance is not well correlated with profile dilution.

Intensity Dependent Transverse Coupling

- We observe an intensity dependent transverse coupling that effects profile shapes.
- It compromises our ability to control beam shape on target.

Transverse Coupling and Emittance

July 2009 High Intensity

12 Managed by UT-Battelle for the U.S. Department of Energy

Recent Work on Instabilities

- Instabilities observed in the SNS ring:1) Extraction kicker transverse instability, 2) e-p, and 3) resistive wall.
- Recent instability work has focused on e-p. At SNS it does not have a clear-cut parameter dependence. Case by case variation seen for:
 - Intensity threshold
 - Dependence on 1st and 2nd harmonic RF
 - Leading plane (horizontal or vertical)
 - Trailing or leading edge instability.

Leading versus Trailing Edge e-P

 e-P is sometimes observed on the leading edge of beam, and sometimes on the trailing edge. Sometimes both.

14 Managed by UT-Battelle for the U.S. Department of Energy

e-P vs. 1st Harmonic RF

• The instability is not consistent with Landau damping laws.

15 Managed by UT-Battelle for the U.S. Department of Energy

Z. Liu, PhD thesis

Effect of Bunch Shape on Instability

• The instability can be suppressed by creating a flatter profile.

e-p Activity During Production

Trace e-p activity sometimes observed during operation.

Summary of Collective Effects

Phenomenon Observed	During Production?	Impact on Production
Space charge profile broadening	Yes	Makes a flatter beam on target.
Transverse coupling	Sometimes	Loss of independent control of planes.
Broadening due to resonance	No	
e-p Instability	Yes (trace)	No impact.
Extraction kicker transverse instability	Νο	
Resistive wall instability	Νο	

Managed by UT-Battelle for the U.S. Department of Energy

18

Looking Forward

- 1. Work to resolve Twiss beta measurement method discrepancy. Data taken on 12-20-2011.
- 2. Initiate in depth study on intensity dependent transverse beam coupling. Graduate student project (R. Potts).
- **3.** Continue to understand e-P parameter dependence.
- 4. Understand additional observations not included in this presentation: tune splitting in BTF measurements, benchmark discrepancies, disappearance of tune split dependence in transverse coupling...

Auxiliary Slides

Beta Functions: MIA vs Quad Tune Method

- 1. Observe a high degree of non-symmetric beta beat, large deviation from model. Level depends on scale factor choice.
- 2. Ratio between straight section beta and arc beta is too low, seems unphysical.

More on Coupling

- For some cases the presence of coupling depends only on intensity, and for others it depends on intensity and tune split.
- The two cases above have different machine configurations, specifically the closed orbit in the injection region.

