Laser Based Beam Instrumentation

Yun Liu Beam Instrumentation Team

Accelerator Advisory Committee

January 10 – 12, 2012

Laser Based Beam Instrumentation at the SNS Accelerator Complex

SCL Laser Wire Profile Monitors

Laser Wire Measurement Performance

Recent Progress

- Simultaneous profile scans can be performed at multiple stations
- EPICS software developed to make laser wire measurement operation more convenient
- User can measure profiles at any single or a group of locations by simple clicks

From EPICS, user can select one, multiple, or all scanners

Laser Wire Transfer Line						
Label	Description	Retract mm Insert Command				
LW_01	Station 01	-0.037		Rtn Lim	Set Pt	Ins Lim
LW_02	Station 02	0.042		Rtn Lim	Set Pt	Ins Lim
LW_03	Station 03	-0.058		Rtn Lim	Set Pt	Ins Lim
LW_04	Station 04	0.138		Rtn Lim	Set Pt	Ins Lim
LW_12	Station 12	-0.016		Rtn Lim	Set Pt	Ins Lim
LW_13	Station 13	0.069		Rtn Lim	Set Pt	Ins Lim
LW_14	Station 14	-0.021		Rtn Lim	Set Pt	Ins Lim
LW_15	Station 15	-0.016		Rtn Lim	Set Pt	Ins Lim
LW_32	Station 32	0.021		Rtn Lim	Set Pt	Ins Lim
LW_EMIT	Beam Block	0.000		Rtn Lim	Set Pt	Ins Lim

5 Managed by UT-Battelle for the U.S. Department of Energy

SNS Accelerator Advisory Committee Meeting , Jan 10-12, 2012

HEBT Laser Emittance Scanner

- Laser wire scanner converts a narrow channel of H⁻ beam into H⁰ beam
- Titanium wire scanner measures divergence of the H⁰ beam released from laser slit
- Measurement is nonintrusive.
- 6 Managed by UT-Battelle for the U.S. Department of Energy

Emittance Measurement Results

Self-consistency check – comparison between the integration of the emittance (over the angle) with the directly measured profiles

Event of Laser Induced Vacuum Failure

- On Nov. 18, 2011, a laser beam induced vacuum failure occurred during laser emittance measurement
- Cracks on the vacuum window were caused by the over focusing of the laser beam by the telescope in the measurement station
- Vendor specified threshold of optical breakdown has been re-confirmed in the lab
- Optical design has been modified to ensure optical fluence on the vacuum window below 10% of the optical breakdown threshold

Cracks on the vacuum window

for the U.S. Department of Energy

SNS Accelerator Advisory Committee Meeting, Jan 10

Laser Based Bunch Shape Monitor

9 Managed by UT-Battelle for the U.S. Department of Energy

Longitudinal Bunch Size Measured at MEBT (2005)

Laser Bunch Shape Monitor at MEBT

Laser and fiber launching optics

- Picosecond pulse transmission through fiber has been studied
- Fiber transmission line has been installed
- Measurement station has been modified
 and tested
- Detection part is being designed and will be installed in the summer

Measurement site

Fiber output

11 Managed by UT-Battelle for the U.S. Department of Energy

SNS Accelerator Advisory Committee Meeting , Jan 10-12, 2012

Laser Assisted H⁻ Beam Stripping

- Our team has developed a novel approach of "foil-less" stripping for chargeexchange injection in high intensity proton facilities
- The approach uses a three-step method employing a narrowband laser beam
- Proof-of-principle experiment demonstrated a stripping efficiency of 90%

Next Stage Laser Stripping Experiment Plan

New experiment site

13 Managed by UT-Battelle for the U.S. Department of Energy

Macro-pulse laser system

- Optimization of beam parameters has been investigated to minimize the laser power requirement
- Macro-pulse laser system has been designed, fabricated and tuned
- The laser can deliver 1 MW / 50 ps / 402.5 MHz micropulses at 355 nm. Micro-pulses are bunched to 10 us macro-pulses at 10 Hz.
- Laser is ready for experiment on actual SNS H⁻ beam
- Vacuum vessel and stripping magnets have to be designed and manufactured SNS Accelerator Advisory Committee Meeting, Jan 10-12, 2012

Laser Optics Capabilities at SNS

- Laser Rooms
 - HEBT laser room light source for SCL laser wire scanner and HEBT laser emittance scanner
 - Mezzanine laser room light source for MEBT laser bunch shape monitor
 - Front end laser room light source and optical cavity R&D development for laser assisted H⁻ beam stripping
- Lasers
 - Nd:YAG Q-switched lasers with pulse widths of 7-10 ns and peak powers of 100 MW
 - Ti-Sapphire mode locked laser with pulse width of 2.5 ps and rep. rate of 80.5 MHz
 - Master oscillator power amplifier (MOPA) system providing macro-pulses with 1MW/50ps/402.5MHz at 355 nm
- Expertise
 - High sensitivity high dynamical range signal detection
 - Motion control and optical sensing with high radiation resistance
 - Laser beam pointing stabilization
- Collaboration with DOE SBIR funded project is vital for supporting a PostDoc and R&D activity

R&D: Fiber Transmission of ps Laser Pulses

- Optical fiber transmission has advantages of stability, easy maintenance, and safety
- A 100-ft large mode area (LMA) fiber was used to transmit picosecond KW laser pulses
- Beam profiles and pulse width variation are studied as a function of launching optics, fiber length, and transmission power

R&D: Beam Recycling Optical Cavity

Laser UV beam IR beam PZT mirror **Error signal Feedback loop** 0.8 0.7 0.6 0.5 Σ ř 0.2 0.1 -0.1 1000 1500 2000 250 RUUUR 4000 Time (s)

Dual color optical cavity

Experiment setup

Summary

- World-first large scale, operational laser wire system has been implemented at SNS-SCL. Profile measurement has been conducted on 1 MW, neutron production beam.
- Laser emittance scanner has been commissioned at SNS HEBT.
- Laser based bunch shape monitor is being developed at SNS MEBT using optical fiber transmission.
- Laser assisted H⁻ beam stripping proof of principle experiment was demonstrated. Next stage experiment using macro-pulsed laser is being developed.
- Significant infrastructure and expertise on laser based beam instrumentation have been acquired at SNS

