Controls and Protection Systems

Karen S. White

Controls Group Leader

Kelly Mahoney

Protection Systems Team Leader

ORNL is managed by UT-Battelle for the US Department of Energy

Integrated Control System Overview

• ICS Scope: Controls, Timing and Protection Systems

Accelerator	Instruments
Target	Conventional Facilities
Cryogenics	Test Facilities

- Large, distributed system based on the Experimental Physics and Industrial Control Systems (EPICS) toolkit and Control System Studio (CSS)
- EPICS provides a flexible, layered architecture and integrates a variety of front end platforms
- This scalable, distributed architecture allows:
 - new devices, capability, functionality to be added as needed
- Emphasis on commercial, configurable, collaborative solutions

System Performance - Availability

Sustaining Control System Performance

Spares

- Maximize use of standard hardware to minimize the number of different types of spares needed
- Test new spares upon arrival and "green tag" to ensure operability

Obsolescence

- Identify hardware (primarily custom designs) at greatest risk for obsolescence issues
- Systematically redesign and deploy new modules to stay ahead of obsolescence curve
- Identify and phase in commercial replacements before spares are depleted

Sustaining Control System Performance

- Infrastructure new Oracle servers
 - Significant performance improvement
 - Redundant servers in Front End in case of server room issues
- Documentation
 - Major effort underway to update and create drawings

Staffing

 Filled key positions (opened by retirement/departures) with high quality, experienced staff

Progress on obsolescence

- Timing System
 - Designed new timing receiver card
 - Replaces utility and trigger modules
 - Deployed for HPRF FY14/15 (15 units)
 - Deploy to LLRF FY15/16 (>100 units)
 - Designed new timing fan-outs
 - Fiber-to-Fiber fan-out 100% deployed FY14 (15 units)
 - Fiber-to-Copper fan-out 62% deployed, complete in FY15 (140/225 units)
 - New timing master running in RFTF, migrates to accelerator summer 2016

National Laboratory | SOURCE

Progress on obsolescence

- Machine Protection System
 - Hardware near end-of-life —limited ability to repair existing platforms
 - Complex, high maintenance system
 - Design in progress FY15 (AIP-39 ~\$3.3M)
- Front-end Systems
 - Standardized front end test stand and production ion source power supply controls interface, deployed to ITSF (improved reliability and maintainability
- LEBT Chopper Controller - Redesigned, deployed FY14

Progress on obsolescence

- Remote Handling
 - Obtained spare computer and other control components for the Remote Handling System
 - Working with Mechanical Systems Group to evaluate long term options for replacement system (future AIP)
- Vacuum AIP-35 (\$4.6M)
 - Replaces obsolete controls components: gauge controllers, ion pump controllers, PLCs
- Power Supply Interface
 - Working with Electrical Group on replacement proposal

Controls System Development

- All teams provided support to build and upgrade controls and protection systems for many customers
- Projects supported
 - Development of new test facilities
 - Improvements to infrastructure, accelerator, target, cryogenics, conventional facilities and instrument

National Laboratory SOURCE

9 Controls and XKCdicCOM

Controls System Development Accelerator

- Improving operability of secondary stripper foil mechanism
- CCR workstations migrated from 6 or 4 monitor configuration improving workstation performance while maintaining screen space

Controls System Development Accelerator

- Upgrading HPRF IOCs due to high load
- DTL and CCL RCCS
 - Flow transmitter upgrades
 - All electronics removed from tunnel
- HVCM Oil Skid Prototype new controls developed and will be used in final solution

Controls System Development Target

- Designed improvements for mercury leak detection circuit
- Upgraded target shutter drive pump skid controls
- Designed and built measurement/data acquisition system for Inner Reflector Plug Tool

National Laboratory | SOURCE

Controls System Development Cryogenics

- Worked closely with Cryogenics Group to improve CHL and SCL controls
 - Tuned control loops to provide more stable primary return pressure from the cryomodules => more stable beam
 - Investigation and correction of problems with 2K cold box variable frequency drive
 - Investigation and correction of problems with 2K cold box magnetic bearing system

National Laboratory | SOURCE

Controls System Development Conventional Facilities

- KL01-KL05 HVAC Upgrade
- Beam Diagnostics Room HVAC Upgrade
- HEBT DI Water Upgrade integrated new VFDs and additional instrumentation

- Cooling Tower Acid Neutralization System
- Beam Diagnostics Room HVAC upgrade

Controls System Development Test Facilities

- Spare RFQ Timing, MPS, PPS, Vacuum, subsystem controls
- Upgraded RFTF cryogenic controls to support horizontal test apparatus, vertical test apparatus and medium beta cryomodule

 Cryogenic Test Facility

 developed controls for compressor, cold box, and helium dewar controls

Controls System Development Instruments

- New construction
 - Corelli (IPPS, Vacuum, HVAC, EPICS controls, system tools)
 - USANS (IPPS, Vacuum, HVAC, EPICS controls, system tools)
- Upgrades
 - BASIS, Sequoia –
 Vacuum Controls
 Upgrades
 - Vision, Vulcan EPICS controls

Controls System Development

🔛 Alignment Scan 🔀

 New CS-Studio tools developed to support instrument and experiment operations

🚰 Table Scan 🛿

BL16B:CS:RunInfo:Title

Recommendations from AAC 2013

 There were no recommendations for Controls or Protection Systems from the 2013 AAC

National Laboratory | SOURCE

xkcd.com

Controls Strategy for STS

- The ICS can be extended to meet the needs of STS
- Hardware and software will be added for new devices
- Important to stay on track replacing obsolete components to ensure we can duplicate proven systems

Challenges

- MPS "Silent Failure" resolved
 - An IC could fail undetected, letting the MPS grant permission to operate despite active fault condition
 - Caused by a fundamental design flaw in the original hardware which prevented the fault condition from being reported to MPS Master
 - Weekly MPS surveillance was conducted until this problem was fixed by a firmware update
 - Modifications deployed during summer FY14
- PPS grounding error
 - Discovered in the accelerator PPS system in July 2013
 - Kelly Mahoney will discuss response to this problem and long-term plans for Protection Systems, next talk

Summary

- Controls and Protection Systems performance is good, meets availability goals
- Supporting many improvement projects
- Important to continue efforts to update obsolete components
- The ICS is extensible for the STS project
- Investments in Protection Systems are necessary to improve processes

Controls – Protection Systems

Kelly Mahoney

Protection Systems Team Leader

Controls - Protection Systems

Responsibilities

- Accelerator, Target, and Instrument access controls and interlocks – Personnel Protection Systems (PPS)
- Target Protection System (TPS)
- Test facility access controls and interlocks
- Environmental Monitoring Systems
 - Oxygen
 - Prompt Radiation
 - Target Bay Access Differential Pressu
 - Central Stack Flow/Radiation
 - Instrument Toxic/Explosive Gas

ational Laboratory

Major Protection System Equipment Locations

Protection Systems for Sustainability and SNS Mission Support

- Aligned with SNS goals of high availability at high power, high quality science output
- Updating training and mentorships
- Validating the protection systems' configuration basis
- Revising documentation; addressing obsolescence
- Updating system ownership relationships
- Analyzing failure modes and statistics

Protection Systems for Sustainability and SNS Mission Support

- Simplifying Protection System Infrastructure
 - Consolidate PPS architectures and equipment
 - Improved post-maintenance testing better result in less time
 - Reducing types of equipment interlocked by PPS; e.g. low voltage magnets
- Updating Protection Systems Business Processes
 - Defined PST Mission, Vision, Goals
 - Updating work processes
 - Revising how data management tools can better support work processes
 - Creating and tracking metrics
 - Using CMMI for benchmark

July 2013 Accelerator PPS Grounding Error

- April 2014 Modification to add redundant power supplies to increase availability
 - Inter-segment handshaking not tested as part of installation QA or post modification tests
- Error found July 31, 2013 during annual certification testing
 - Under certain conditions, PPS would not have shut off the front end for a downstream fault
 - Common mode error affected both of the redundant chains
 - Unintended result of modification to PPS systems to add redundant power supplies
 - Beam Operations halted until mitigating measures in place
 - Failure mode identified and replicated on bench
 - Very complicated failure mode

July 2013 Accelerator PPS Grounding Error

- Power supply modification required a common ground between A and B divisions
- Improperly installed jumper floated Linac PPS ground, creating a sneak circuit
- Sneak circuit defeated segment to segment handshaking if enough PLC outputs were ON

Sneak Circuit Biases Inputs

Sneak Circuit – Outputs Bias Inputs

PPS Grounding Error – Recovery

- August 2013 January 2014 Administrative Controls:
 - Weekly testing of segment to segment handshake
 - Extent of condition finds no similar common mode error vulnerability
 - HAZOP identifies areas for improvement
 - Sept. 2014 Independent External Review of Configuration Management of Credited Controls

PPS Grounding Error – Recovery

- January 2014 Engineering Controls Phase I:
 - External design review
 - Added continuous self-test function to inter-segment communication
 - Re-routed grounds to minimize impact of an open ground connection
- July 2015 Engineering Controls Phase II:
 - Reverting back to isolated power/ground for PPS
 - Building duplicate set of control room racks to ensure adequate time for testing
- Forward
 - Implementation of areas for continuous improvement

Summary

- Protection Systems are aligned with sustainable high availability, high power SNS operations
- Improving Protection System work and technical processes
- ORPS corrective actions for PPS error complete
 - Now addressing continuous improvement