Linac Beam Dynamics Progress

Spallation Neutron Source AAC, February 03, 2010

Outline

SCL Beam Loss Reduction

- Weak Resonance at 60° Phase Advance
- Beam Emittance Measurement
- > Transverse Beam Matching Progress
- Linac Lattice & Model Limitations

Summary

SCL Beam Loss Reduction

87

77

Adv. (deg) 22

17

In March 2009, SCL phase advance was reduced from the baseline design to ~50°, and the SCL loss was reduced by ~50%, so as the residual activation

No big difference to beam emittance, in simulations with IMPACT

3 Managed by UT-Battelle for the Department of Energy

Presentation_name

Multipole Components of the SNS Linac Quads

$$B(r,\theta) = \sum_{m=1}^{\infty} C_m \cdot \left(\frac{r}{R_{ref}}\right)^{m-1} \cdot \sin\left[m \cdot (\theta - \alpha_m)\right]$$
$$k_m = \frac{1}{B \cdot \rho} (m-1)! C_m \cdot \left(\frac{1}{R_{ref}}\right)^{m-1}$$

J.G. Wang

Multipole	m = 6	m = 3	m' = 3
(units: 1×10 ⁻⁴)			From dipole
CCL	59.04	3.72	
R _{REF} 1.3 cm	37.95	(2.91)*	
SCL	28.86	-6.89	193.46
R _{REF} 3.0 cm	(4.20)*	(-1.29)*	(207.93)*

* Skew term

Weak Resonance at 60° Phase Advance

Maximum beam emittance increase in a doublet lattice versus transverse phase advance in simulations with ORBIT, no RF, no space-charge.

6-order resonance is very weak, but if the duodecapole component is large enough, and linac lattice is not too short, it appears.

5 Managed by UT-Battelle for the Department of Energy

Turned all SCL cavities off, and set all correctors to zero, transport 186 MeV beams through a doublet-lattice, and measure beam loss with all the SCL beam loss monitors. No RF, no longitudinal focusing, and space charge effect can be ignored. Duodecapole driven resonance at 60°

Measured total SCL beam loss versus phase advance

Transverse phase advance for zero current (markers) and 38mA (lines)

60° lattice is the baseline design case, but beam loss is the worst in simulations, because of the 60° resonance

Total fractional SCL beam loss in simulations with PARMILA, 30-unit duodecapole term is included, for 38 mA design beams

In measurements, 70° lattice reduces loss by 10%, 50° by 50%; while model predicted 50% and 80%, respectively. The weak 6-order resonance shows a measurable effect in the SCL loss. However, beam loss, particularly in the medium-beta section, may also from other factors, e.g, longitudinal halo.

Beam Emittance Measurement

• CCL Longitudinal (S. Cousineau, A. Aleksandrov)

Measure bunch size with 3 BSMs in CCL1, and then fit BSM data with linac models (XAL or PARMILA). Normalized emittance ~0.4 mm*mrad in September 2009.

(In different measurements, it varies from 0.4 to 0.8 mm*mrad)

• SCL Longitudinal

Scan beam injection energy and phase across the longitudinal acceptance, measure beam current at the exit of the linac. Normalized emittance ~0.5 mm*mrad in October 2009. (It also varies from 0.4 to 0.8 mm*mrad in different runs, or even during a single operation routine)

• Design ~ 0.3 mm*mrad

Measured longitudinal emittance is 1 to 3 times that of the design, due to ion source and RF drifts; no obvious effect on beam loss.

Beam Emittance Measurement

• Transverse

CCL		Design Values	Design Quads (10/27/2009)	Production (12/22/2009)
α _x		-3.3	-3.5 (6%)	-4.7 (42%)
β _x (m)		3.9	4.0 (3%)	5.1 (31%)
ε _x (π-mi	m-mrad)	.33	.30 (9%)	.39 (18%)
$lpha_{y}$.81	.41 (49%)	.08 (90%)
β _y (m)		.77	.61 (21%)	.34 (56%)
ε _y (π-mi	m-mrad)	.33	.44 (33%)	.37 (12%)
SCL	Design	Production (10/01/2009)	HEBT Design	Production (09/30/2009)

UUL	Design	(10/0	1/2009)		Design	(09/30	/2009)	
α_{x}	-1.57	-1.8	(15%)	α _x	.97	1.08	(11%)	•
β_x	8.13	6.5	(20%)	β_x	3.67	3.59	(2%)	
E _x	.33	.44	(33%)	\mathcal{E}_{χ}	.41	.45	(10%)	
A_y	.68	.71	(4%)	$lpha_y$	-1.95	-1.96	(1%)	
β_{y}	8.63	6.87	(20%)	eta_y	9.38	12.13	(29%)	
Ey	.33	.29	(12%)	Ey	.41	0.50	(22%)	

CCL1

Measured beam size for production setup (12/22/2009)

• SCL

Less progress:

- 1) No effect on loss
- 2) Has not been systematically used for beam matching
- 3) Model problems
- 4) Measurements

• Model

• Model

Initial Twiss, 11/16/2009

IMPACT

Case No.	Alpha_x	Beta_x	Emit_x	Alpha_y	Beta_y	Emit_y
Round 1	-2.49	6.50	0.27	2.98	5.78	0.21
Round 2	-2.61	6.45	0.23	2.94	5.81	0.21
Round 3	-2.54	6.52	0.40	3.01	5.76	0.24
Round 4	-2.65	6.36	0.22	3.01	5.78	0.20
Average	-2.57	6.46	0.28	2.98	5.78	0.22
Difference	<3%	~1%	~26%	~1%	<1%	~6%
	~25%	~34%	~40%	~90%	~3%	~70%
XAL (S. Co	usineau)					
Round 1	-1.50	11.14	0.37	0.87	6.30	0.47
Round 2	-1.60	10.27	0.36	2.00	8.02	0.43
Round 3	-2.12	5.97	0.50	1.22	5.10	0.45
Round 4	-2.74	8.47	0.47	0.38	4.56	0.46
Average	-1.99	8.96	0.42	1.09	5.97	0.45
Difference	~22%	~25%	~16%	~46%	~ 21%	~ 2%

• Measurements

(11.16.2009 Y. Liu)

Short pulse 20 us, measurement starts at 5 us. With and without ~4 mm steering at the entrance of SCL

LW	Without	With	LW	Without	With	
1x	2.77	2.76	1y	2.77	2.98	~7%
2x	1.51	1.59	2у	2.07	2.20	~6%
3x	4.03	3.95	Зу	2.55	2.71	~6%
4x	4.79	4.82	4y	2.00	2.20	~10%

Long pulse 500 us, measurement starts at 100 us.

LW	Short	Long	LW	Short	Long	
1x	2.85	2.76	1у	2.88	2.62	~10%
2x	1.29	1.47	2у	2.23	2.82	~25%

In ion source transient or LLRF AFF learning stage, beam is not very stable, profile measurements in the first 20 to 30 us could be problematic, both longitudinal and transverse.

• Linac Cavity Phase Tuning, July 2009 (Units: degree)

Cavity	Production setting	Sunday (Diff.)	Tuesday (Diff.)
DTL1	-153	7.3	7.3
DTL2	129.5	3.8	3.8
DTL3	84.7	9.9	9.9
DTL4	156.8	11	11
DTL5	106.1	11	11
DTL6	39	9.6	9.6
CCL1	143.2	15.8	15.8
CCL2	170.8	16.4	16.4
CCL3	-110.9	10	10
CCL4	-112.8	8.1	4.5
SCL01a	-120.3	1.7	8.4
SCL01b	162.5	4.1	10.3
SCL01c	-130.9	2.7	40.3
SCL02a	-52.0	9.2	15

Phase differences in warm linac up to 16°, and in SCL from 8° to over 100°, but beam loss is almost exactly the same.

• SCL RF Shaking

March, 2009

Before and after CCL4 phase reduced by 3°; after the change, agrees better with model, and SCL beam loss is also reduced

SCL RF Shaking

the loss involves a halo of only ~ 10^{-5} of the total beam.

18 Managed by UT-Battelle for the Department of Energy

-2 -2.5

90

130

170

210

distance s, m

330

290

250

• SCL Beam Trajectory Response

•Transverse kick at the start of the SCL: RF defocusing has a large effect

•Trajectory difference from dipole kick at the start of the SCL: Red = envelope model, blue = BPM measurements

> •Envelope model with thin lens approximation requires ~ 5% correction on the RF defocusing strength

•Finely sliced cavity field maps in IMPACT may do a better job – no correction required for high gradient SC cavity.

•None of the models predict x-y coupling

Summary

- ✓ SCL beam loss is reduced by 50% or more
- ✓ Weak resonance at 60° is demonstrated
- Beam emittances in the linac are measured
- ✓ Transverse matching: warm linac, and SCL
- Identified a few limitations of current model
- Problems in the linac lattice, and in different models need further investigations
- ✓ Thanks…

