
SRF Activities

Presented at the Accelerator Advisory Committee Review

John Mammosser SCL Systems Group Research Accelerator Division

March 24-26, 2015

ORNL is managed by UT-Battelle for the US Department of Energy

Superconducting RF Activities at SNS

- SRF activities at SNS are focused in three primary areas
 - 1. Support of Superconducting Linac (SCL) operations, maintenance and improving operational performance
 - 2. Support of SRF and Plasma Processing R&D aimed at improving installed operational gradients
 - 3. Operating and improving SRF facilities to carryout the above activities

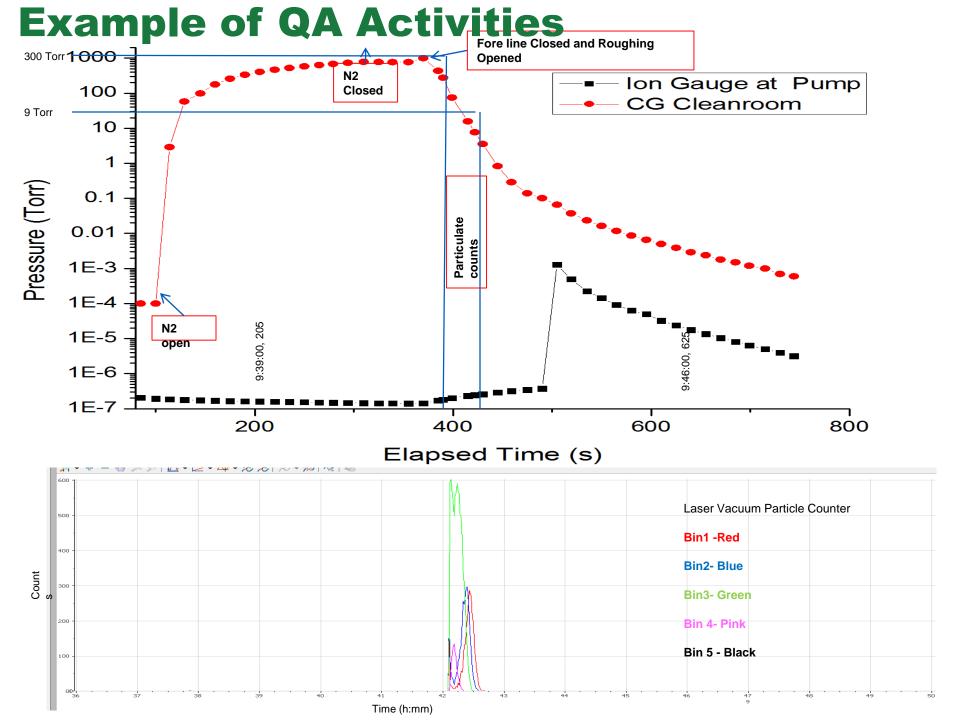
SCL Support Activities - Since last Review

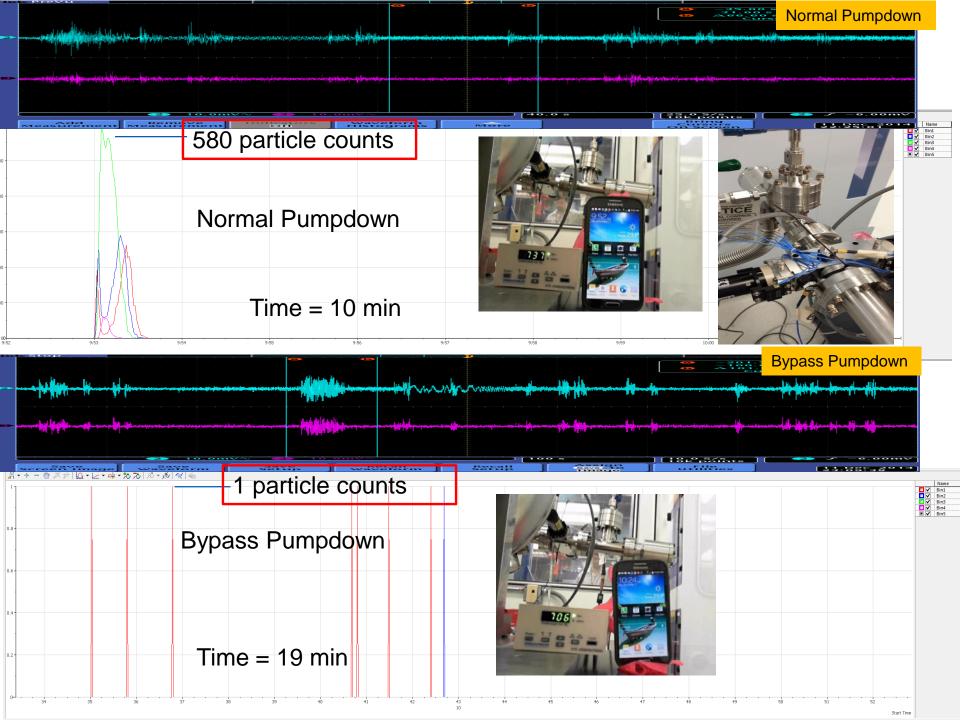
- Highlights of support activities for reliable LINAC operation:
 - Removal of one Medium Beta (MB) and one High Beta (HB) cryomodule for replacement of a RF coupler in each module
 - Standard servicing of these cryomodules was conducted
 - Tested in test cave to verify performance
 - Installation of these two cryomodules back into service
 - No MB spare is still a concern
 - Removal of a low performing HB cryomodule (now the spare HB), this CM will be serviced and part of Plasma R&D development efforts in the next few months

- Warmup of three cryomodules for warm section repair

SCL Current Support Activities

Typical Cryomodule Servicing


- Removal of HOM probes and piezo fast tuners
- Repair of CM components (reliefs, diodes, tuners, etc.)
- In-situ thermal cycling of CM's to recover performance
- Quality Assurance Team Activities
 - Focus on development of repeatable repair procedures and capturing of critical data
 - Reducing particulate contamination during repairs and R&D activities
 - Particulate contamination leads to reduced gradients due to field emission effects



Quality Assurance Team Activities

 Reducing particulate generation and migration is a priority

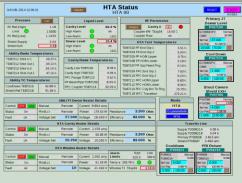
- Topical areas visited by the QA team
 - Particulate control during venting and purging (example next)
 - Particulate control during cryomodule beam line component removal and replacement
 - Cleaning step effectiveness and improvements (just started)

Development of in-house MB spare

• There is a strong need for a spare MB Cryomodule!!

- In-house cavity prototyping effort is underway with MB cavity, procedures developed and tooling verified
 - Developing local vendor capabilities
 - Shorten long lead procurements activity (Response to AAC2012 recommendation)
- Next step is to verify trimming procedure and then fabricate first MB cavity spare in niobium
- The spare MB CM effort is awaiting funding

Horizontal Test Apparatus Developed, Integrated and Commissioned

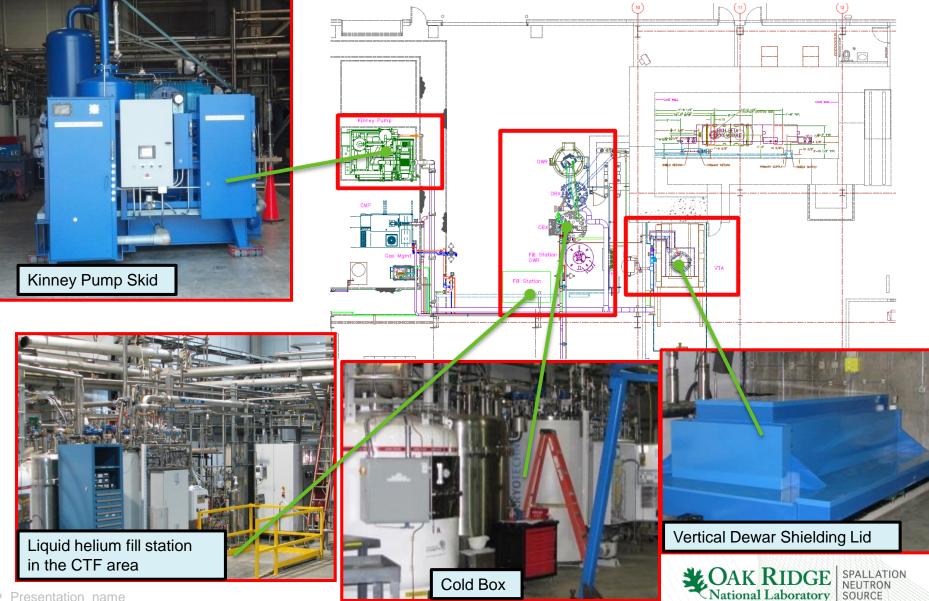

- Qualifies Cavity in a Similar Way to Accelerator Operations
- HPRF and Diagnostics
 - Using 5MW klystron in the RFTF
 - 8 radiation detectors, camera system for imaging inside of cavity, 20 temperature sensors, etc

Horizontal Testing

 Used first to support plasma processing R&D with HB cavities fully dressed

SRF Support of plasma processing R&D

- Preparation for HTA test
 - High beta cavities dressed with helium vessel
 - Preparation of cavities in clean room
 - Installation of cavity in HTA
 - Integration of HTA in the SNS test cave
 - Support activities during test


Vertical Test Area

- Commissioned at 4.2K 9/2013
- Started commissioning at 2K with Kinney skid 1/2015
- Current focus is on qualifying the two HB cavities with modified end-groups
 - Cavities had end groups changed to remove HOM cans and improve thermal stability
 - Verify vertical performance at 2K

CTF System Installed and Commissioned

12 Presentation_name

CTF Refrigeration System Specifications

Description	Specification
Refrigeration	650W @ 4.4K
Liquefaction	240 L/hr
He High Header Pressure	13 atm
Helium Mass Flow	81 g/s
Oil Content	< 0.1 ppmv
He Low Header Pressure	1.05 atm
Start Up Time	< 6 hours

CTF Liquid Helium Fill Station

- The CTF Fill Station now commissioned and ready for use
 - Needed to mitigate supply chain issues during helium shortages
 - Allows for responding to emergency needs of liquid helium supply
 - Supports sample environment and instrument operations

The CTF Fill Station is also integrated with the VTA

- Supplies liquid helium to VTA
- Potentially allows operation of the VTA without running the CTF
- Liquid helium can be transferred from the VTA back to the Fill Station
 - Power is conserved with this feature

Additional SRF Facilities

– Cavity Inspection Station

• Internal cavity inspection system construction complete, currently developing tooling and capture hardware

- Centrifugal Barrel Polishing

Installed but not commissioned, procedure be developed for a cavity repair

– Niobium Heat Treatment Furnace

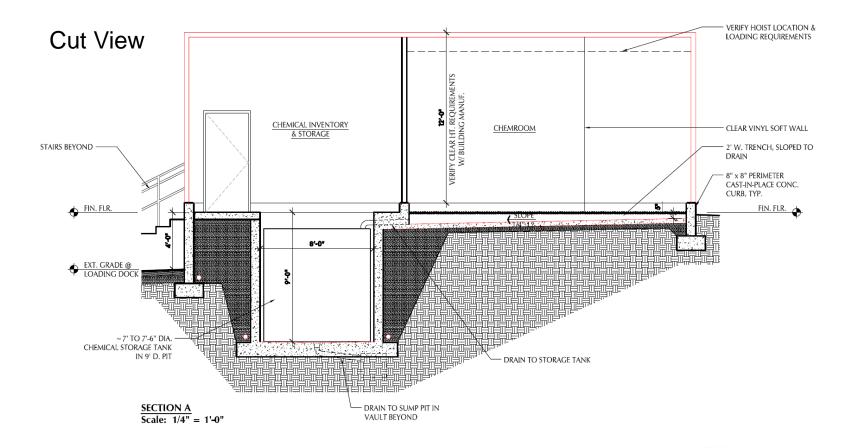
• Furnace installed, commissioned and R&D activities started

Cleanroom assembly facilities continued operations and improvements

- Degreasing of cavity and new component cleaning station (on site but not installed)
- HPR commissioned and studies for performance identified
- New entry way and larger doors installed for easier installation of cryomodules for repair

Facility Plans

• There is a Need for a Chemistry Facility


- The facility will aid in the repair and maintenance activities addressing damaged cavities, and the reprocessing of cavities used in the linac
- This facility is necessary for the cleaning and processing of SRF structures for R&D to improve machine performance
- The facility is also necessary for process development for new cavities
 - STS can benefit from this effort

A Small Scale Chemistry Facility Concept Was Developed

The chemistry facility concept is designed as a low through put cavity and component processing facility Plan submitted, reviewed and awaiting funding

Small Scale Chemistry Facility Concept

Small Scale Chemistry Facility Capabilities:

- Electropolish Chemistry
 - Full cavities (low through put)
 - Small samples and cavity components
- Degreasing
 - Full cavities (moved from cleanroom)
 - Small samples and cavity components

HF free chemistry will be pursued to reduce risks and cost

Summary of SRF Activities

- 1. Large part of our effort is supporting linac operations
 - Developing and implementing repairs and improvements
 - Preparing for a spare MB cryomodule with cavity development
- 2. Supporting Plasma Processing R&D for future linac performance improvements
- 3. Developing, operating and maintaining SRF facilities to support above activities

