
Operations Experience/ Remote Handling

- Mike Baumgartner
- **Rick DeCosta**
- John Denison
- Mike Dayton
- **Steve Parsons**
- David McClintock
- Bernie Reimer
- Franz Gallmeier
- **Drew Winder**

Steve Trotter ORNL is managed by UT-Battelle for the US Department of Energy

Outline

- Remote handling in general
 - What we do
 - How we plan
- Major component replacements
 - Targets
 - Proton Beam Windows (PBWs)
 - Shutter and Core Vessel Inserts (CVIs)
- Component Post-Irradiation Examination (PIE)
- Remote handling near term challenges

2013 target recommendations (#24 – 28) were addressed by John Galambos.

Remote Handling Operations at SNS

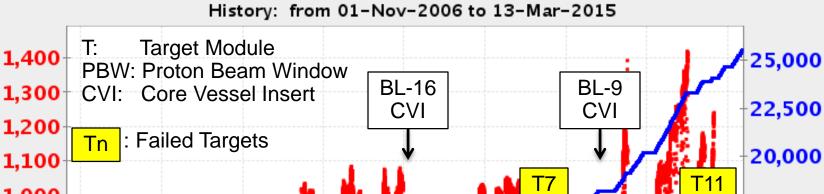
- Operations are a joint ISD RAD effort.
- Since SNS operation began in 2006, a significant amount of remote handling operations have occurred.
- Remote handling at SNS encompasses
 - Major component replacement/operational planning for
 - Targets
 - Proton Beam Windows (PBWs)
 - Shutter and Core Vessel Inserts (CVIs)
 - Future Inner Reflector Plug (IRP)
 - Future Ring Injection Dump (RID)
 - Component Post-Irradiation Examination (PIE)
 - Waste shipment operations

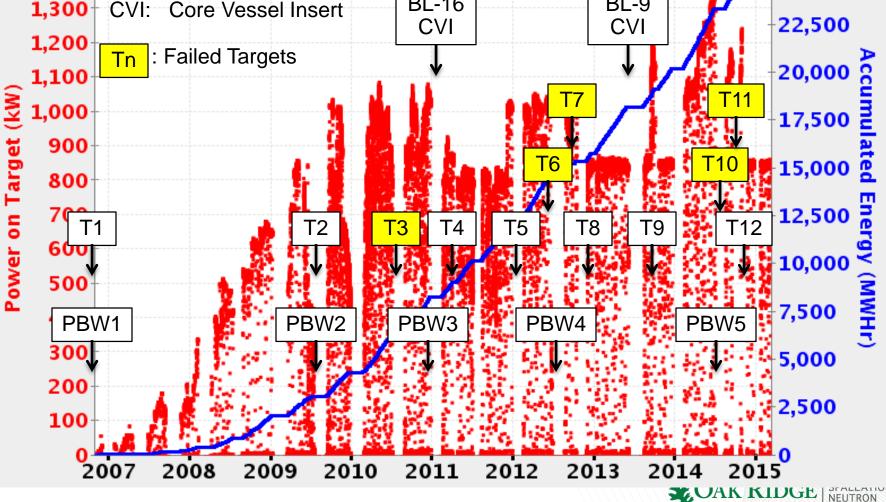
Operational Planning

- Planning for remote handling operations integrates:
 - Radiation damage end-of-life tracking for major components based on actual power history combined with future estimates of beam power, run schedule, and availability.
 - Beam Line (BL) instrument upgrades (shutter replacements and CVI installations).
- Managing the operation to ensure:
 - New components, tooling, remote handling procedures, and resources are available when needed.
 - PIE resources are available following component removal.
 - Waste shipments are coordinated with conclusion of PIE activities.
- Remote Handling activities have become continuous.

Operational Planning—IRP Example

Actuals in RED


Estimates in BLACK


Month	Power (kW)	Duration (hrs)	% Availability	Estimated MWh	Actual MWh	MWh Cumulative	% of Calculated Limit
Jan-15	850	208	95%	168	188	24830	77.6
Feb-15	850	528	95%	426	467	25296	79.1
Mar-15	850	600	95%	485	485	25781	80.6
Apr-15	1400	464	90%	585	585	26365	82.4
May-15	1400	616	90%	776	776	27142	84.8
Jun-15	1400	528	90%	665	665	27807	86.9
Jul-15	0	0	0%	0	0	27807	86.9
Aug-15	1400	400	90%	504	504	28311	88.5
Sep-15	1400	576	90%	726	726	29037	90.7
Oct-15	1400	616	90%	776	776	29813	93.2
Nov-15	1400	552	90%	696	696	30508	95.3
Dec-15	1400	408	90%	514	514	31022	96.9

Remote Installation of Major Components

Power and Energy on Target

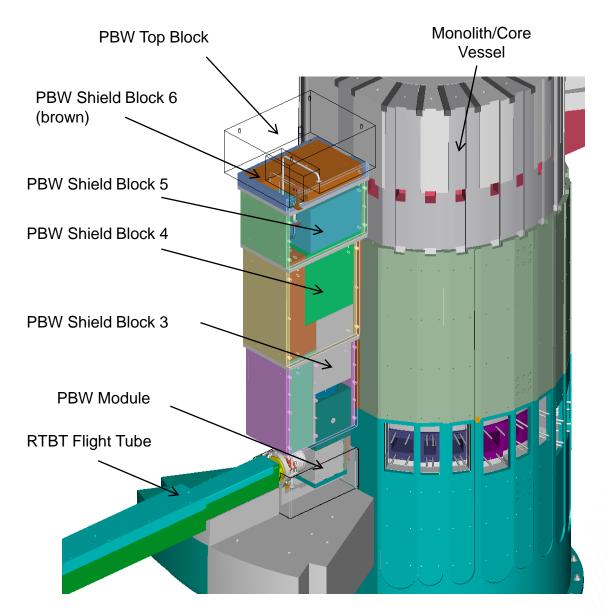
National Laboratory | SOURCE

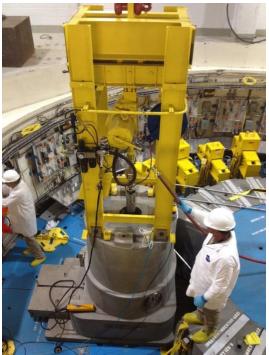
6 2015 SNS Accelerator Advisory Committee Review

Target Replacements & Improvements

Target	<u>Serial</u> <u>Number</u>	<u>Date</u> Installed	<u>Date</u> <u>Removed</u>	Accumul d Energ (MW-hr	ay	<u>Average</u> <u>Power</u> (kW)	<u>RH</u> Hours to Replace	<u>Calendar</u> <u>Days to</u> <u>Replace</u>
T1	MTX-001	We've	made conti	nuous		379	150 ¹	26 ¹
T2	MTX-002	impro	vement in re	emote		771	> 96	17
T3	MTX-005	handling	techniques	, tooling		845	102 ²	13
T4	MTX-006	and pro	cedures, in	part to		782	69	23 ³
T5	MTM-001	make '	<u>'run-to-failu</u>	re" vs.		938	1594	374
T6	MTX-004		ven the nat			916	63	11
T7	MTX-003		handling wo			The first O	RTE targe	et was a
T8	MTM-003		e Service Ba	· · · · · · · · · · · · · · · · · · ·		record se	tter; the s	econd
Т9	ORTE-001 <		ronment, ta	U		lasted a v	week. Thi	s new
T10	MTX-007JF		cement dura			technology	remains	an R&D
T11	ORTE-002 <		t always ref			activity. Sin		
T12	MTM-002	these	e improvem	ents.		remote han	•	
1. Estir	1. Estimated; no data taken. Mercury vent line leak identification and re tooling, and techniques.							ques.

Estimated; no data taken. Mercury vent line leak identification and re 1.


- 2. Configuring Service Bay for target change and crane inspection added 2 days of effort.
- 3. Issue with 7.5T Service Bay crane resulted in a delay of ~7 days.
- Upper knife edge seal leak on MTX-004 added ~8 calendar days; PBW4 installation added 6 days. 4.
- Investigation into T6 & T7 failures added ~22 days to T7 replacement. 5.
- Two crews. IRP Inspection added 1 day. PBW5 installation added ~11 days to complete T9 replacement. 6
- Start of T10 replacement delayed 1.5 days due to Service Bay manipulator wiring damage. 7.
- 8. T11 PIE activities added ~2 days to the replacement.

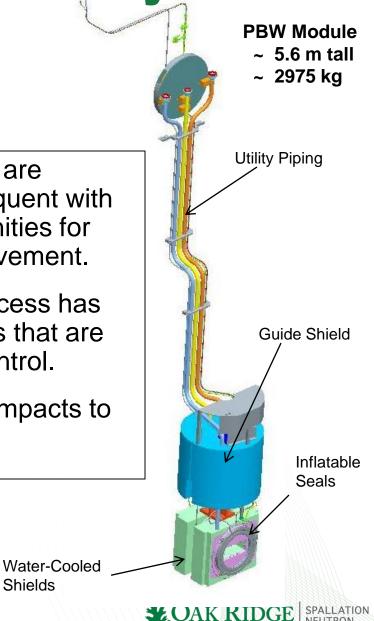

Proton Beam Window Replacements

<u>PBW</u>	<u>Serial</u> Number	<u>Date</u> Installed	<u>Date</u> <u>Removed</u>	<u>Accumulate</u> <u>d Energy</u> (MW-hrs)	<u>Average</u> <u>Power</u> (kW)	<u>RH</u> Hours to <u>Replace</u>	<u>Calendar</u> <u>Days to</u> <u>Replace</u>
PBW1	MTM-001	4/26/06	7/31/09	3055	379	?	?
PBW2	MTM-002	8/17/09	1/5/11	5206	?	36.5	9
PBW3	KTC-001	1/5/11	7/30/12	6378	?	36	9
PBW4	KTC-002	7/31/12	7/18/14	8674	?	34	8
PBW5	KTC-003	7/21/14					

PBW Replacement Operation

PBW Lead-shielded Cask in Position

PBW Being Pulled into Cask

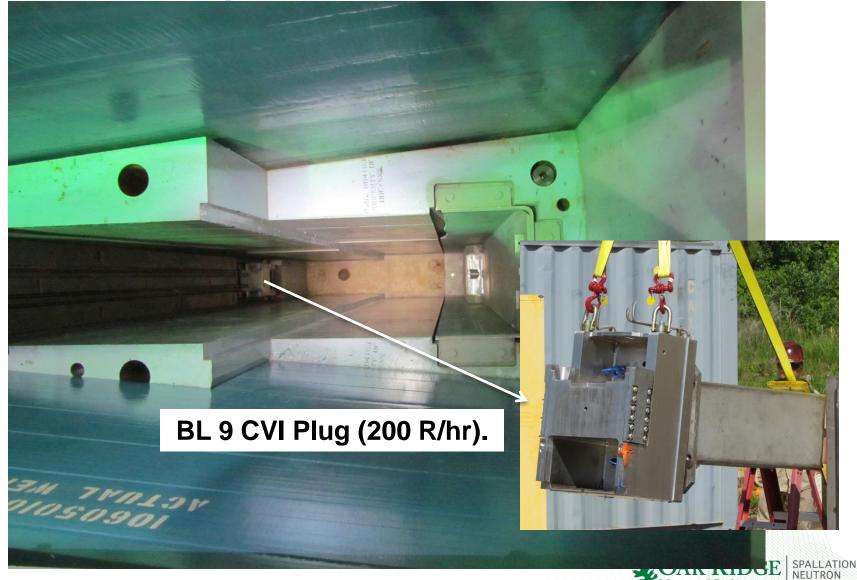

PBW Change Process Relatively Unchanged

PBW4 Installation 10 2015 SNS Accelerator Advisory Committee Review PBW changes are relatively infrequent with fewer opportunities for process improvement.

- "Hands-on" access has fewer variables that are beyond our control.
- Fewer "R&D" impacts to PBW design.

Shields

National Laboratory | SOURCE


PBW Replacement Challenge: Changing Radiological Conditions

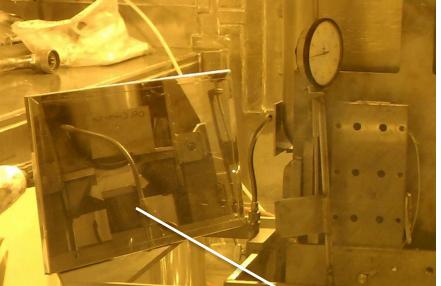
Contact Dose Rates (mR/hr)							
	PBW1	PBW2	PBW3	PBW4			
Shield Block 6	<0.2	<0.2	<0.2	<0.2			
Shield Block 5	0.1 -0 .2	<0.2	<0.2	0.5			
Shield Block 4	1.5	<0.2	2	5			
Shield Block 3	680	680	320	800			
Utility Piping	120	120	400	600			

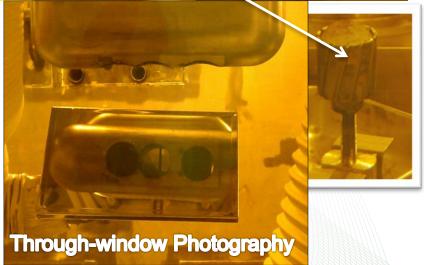
Be-7 Loose Surface Contamination (dpm/LAS)							
	PBW1	PBW2	PBW3	PBW4			
Shield Block 6	Minor Be-7	Minor Be-7	14,000	800,000			
Shield Block 5	Minor Be-7	Minor Be-7	Not measured	400,000			
Shield Block 4	Minor Be-7	Minor Be-7	1x10^6	2x10^6			
Shield Block 3	150,000	150,000	Not measured	1x10^6			
Utility Piping	< MDA	< MDA	800,000	1x10^6			

BL 9 Shutter and CV Installation: Get The Plug Out From Here

National Laboratory SOURCE

And Get The Shutter and CVI In

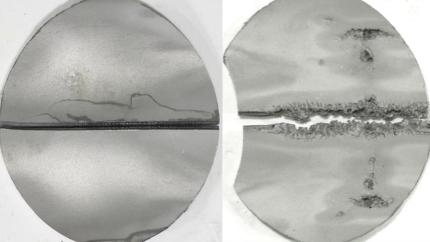



On-site Post-Irradiation Examination (**PIE**) **Capabilities Continue Expand**

- Previously presented PIE capabilities:
 - Remote coring of target nose samples
 - Enhanced vertical and horizontal borescope inspection capabilities
 - Pressure and pressure decay testing of both the water shroud and interstitial regions
 - Leak detector testing of installed/removed targets

15 SNS Bag

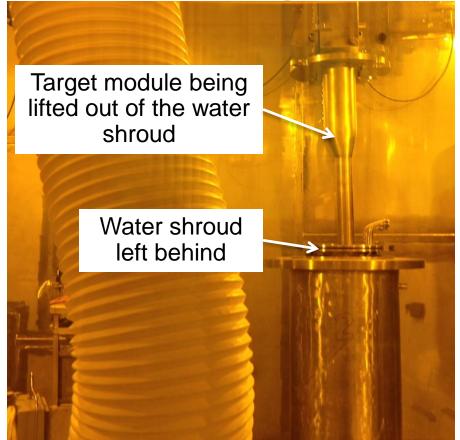
 High resolution photography of target modules through shield windows and directly in Transfer



New PIE Capabilities—Ultrasonic Cleaning

Target 6 – Inner Wall

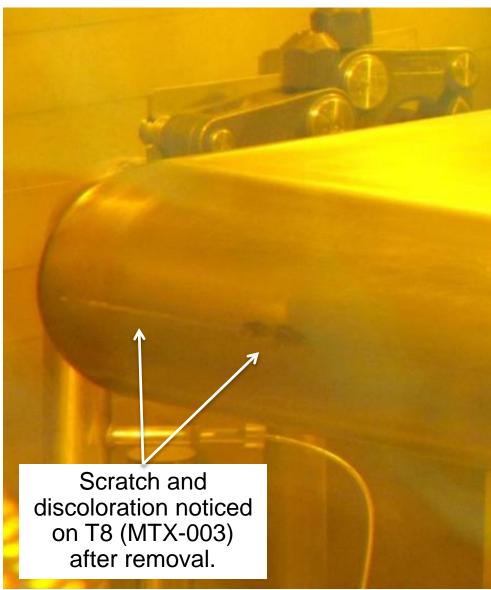
After Cleaning



15 2015 SNS Accelerator Advisory Committee Review

New PIE Capabilities—Removable Water Shroud & Target Module Blanking Plate

Fine mercury droplets on the outside of the mercury pressure vessel at the leak location



- T10 (MTX-007JF) leak location
- New blanking plate used to pressurize mercury side of the target module

SPALLATION


New PIE Capabilities—IRP Inspection

- What caused the scratch?
 - New IRP interference?
 (swelling Be reflector?)
 - Target module alignment (relative to IRP) change?
 - Target module dimensional issue?
 - Target carriage alignment issue?
- Could the interference progress to the point we can't insert or extract a target?

IRP Inspection Tool Designed and Built

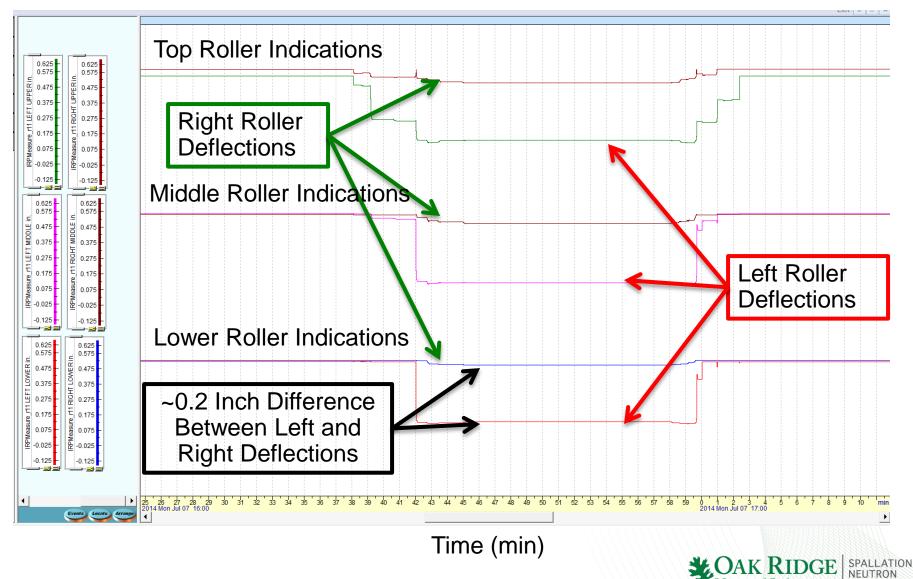
- High-rad camera with offaxis viewing capability enables viewing suspect region.
- Wheels pivot to measure surface deflections during carriage insertion.

19.36" 1 inch more than target (nominal IRP opening 19.00")

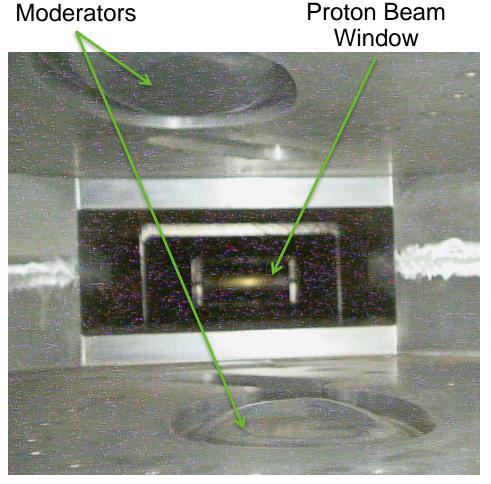
LATION

UAK RIDGE

National Laboratory

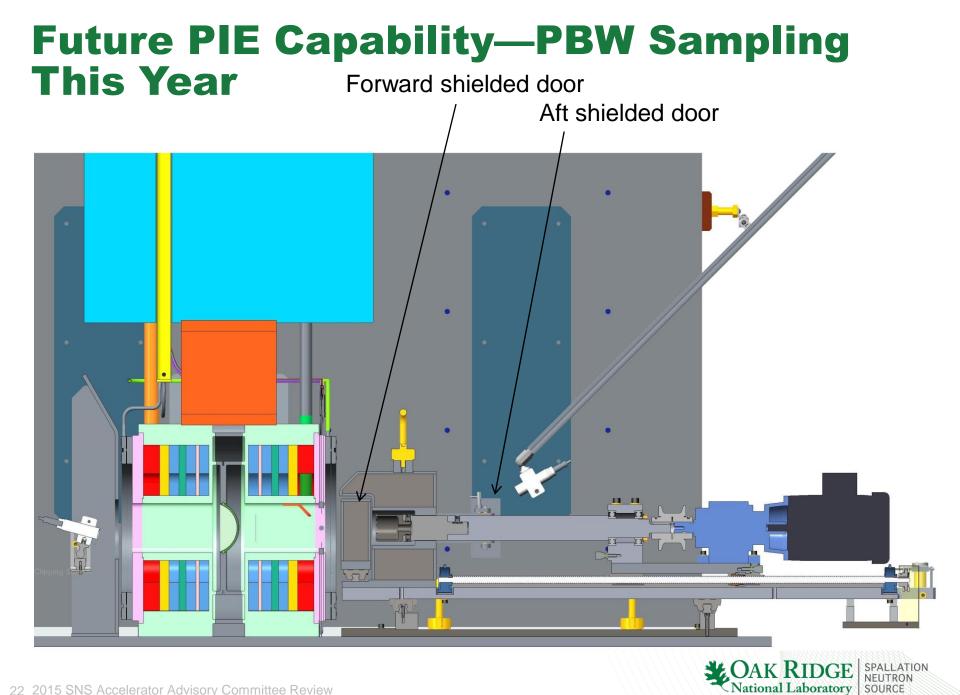

Scratch Location

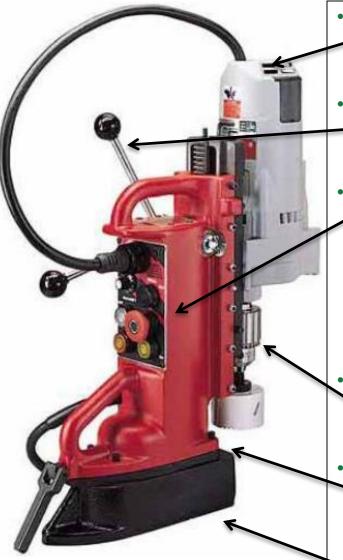
Scratch was found in "left" IRP wall. No evidence of swelling or distortion.


IRP Inspection Tool Roller Deflection During Insertion & Extraction

National Laboratory SOURCE

Other Items of Interest


 We used the opportunity to visually inspect the condition of the IRP—first time anyone had seen it since 2006.


Target Sealing Surface

21 2015 SNS Accelerator Advisory Committee Review

Future PIE Capability—Target Module Core Sampling at Multiple Locations

23 2015 SNS Accelerator Advisory Committee Review

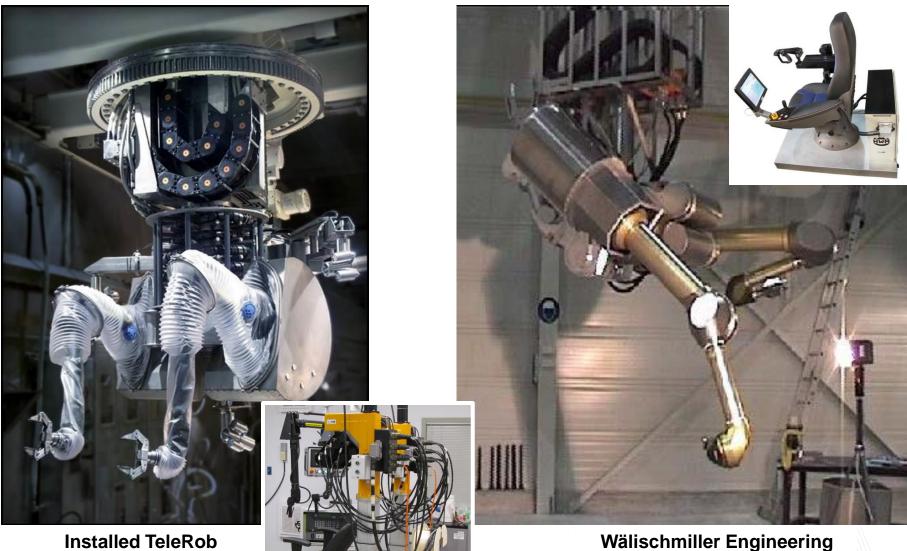
- Incorporate modifications to
 enable drill assembly to be handled remotely
- Remove manual handle &
 incorporate a motor-driven feed and retract system
- Remote out the electrical
 connections for:
 - Motor on/off
 - Motor feed/retract
 - Motor speed?
 - Motor travel?
- Modify chuck to enable remote replacement of cutters
- Mount drill assembly to
 some sort of base plate to enable clamping/alignment/etc.
- Remove Magnet Base

T10 "Proof of Principle" Coring

CAK RIDGE SPALLATION National Laboratory SOURCE

Challenges – TN-RAM Cask Availability Will Improve

- One TN-RAM (Type B) cask is shared internationally.
- SNS is designed to use TN-RAM cask for target and PBW disposal
- AREVA is building a second TN-RAM cask for SNS and FRIB use. Completion is expected Fall 2015.
- Energy Solutions is building an E-360B cask; it is also compatible with SNS design. Completion is expected Summer 2015.



Challenges – Manipulator Obsolescence Issues

- Service Bay and High Bay Manipulator vendor (TeleRob GmbH):
 - no longer supports the system hardware
 - no longer provides replacement parts or service
- "Host" and "Trajectory" computers (PaR Systems, Inc.) that operate Service Bay crane and both bridge systems:
 - Use obsolete and unavailable computer motherboards (with 386 processor), ISA cards, and interface boards.
 - Run on an operating system (Windows 2000) that is no longer supported and not compatible with modern software necessary for communication and backups.
- The manipulator and crane Kollmorgen motors and drives are no longer manufactured.
 CAK RIDGE SPALLATION

National Laboratory SOURCE

Potential Long Term Manipulator Solution

GmbH Manipulator

GmbH TELBOT

Challenges – Control Solutions

- Highest failure rates in robotic systems are associated with cables, controllers, drives, and motors—our efforts are focused in these areas:
 - TeleRob Cables—OK
 - Two spares on hand for each of the cables used in the Service Bay for the manipulator.
 - Drawing for cables outside the Service Bay were reverse engineered and a vendor located—quotes pending.
 - PaR Cables—Not OK
 - No spare crane or manipulator bridge cables are on hand.
 - We have accurate drawings and can fabricate cables as necessary. Identified the cable assembly and connectors that are common; need to stock the parts needed to make up cables in an emergency.
 - TeleRob Controllers—OK
 - Purchased all available spare parts and have at least one spare for each of the major components except one.
 - The High Bay manipulator can be scavenged if necessary.

Challenges – Control Solutions (cont.)

PaR Controllers—OK

- Have built one complete spare computer, configured as a host computer, but can be configured as a trajectory computer in-house if needed.
- Configured two spare hard drives, one manipulator and one bridge crane. Working to develop a modern replacement.
- Unable to purchase some of the interface boards needed as spares so are at risk in that area.
- TeleRob Motors, Drives, and Resolvers—OK
 - We have a few spares for the service gallery TeleRob system and the parts on the Pendant TeleRob are compatible. No further parts are available; we will need to work on an alternative solution for this in the future.
- PaR Motors, Drives, and Resolvers—Not OK
 - Adequate motor spares are on hand.
 - The drives are matched to their motors and we have no spares. Potential replacement drives and motors have been tentatively identified but the specific engineering design has not been started.

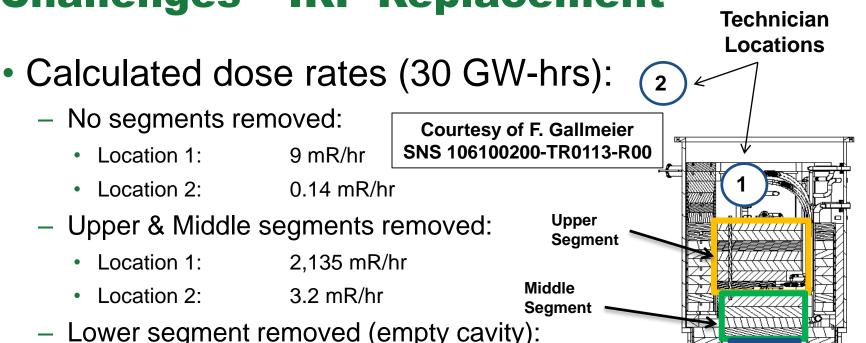
Challenges – On-site Storage of Targets

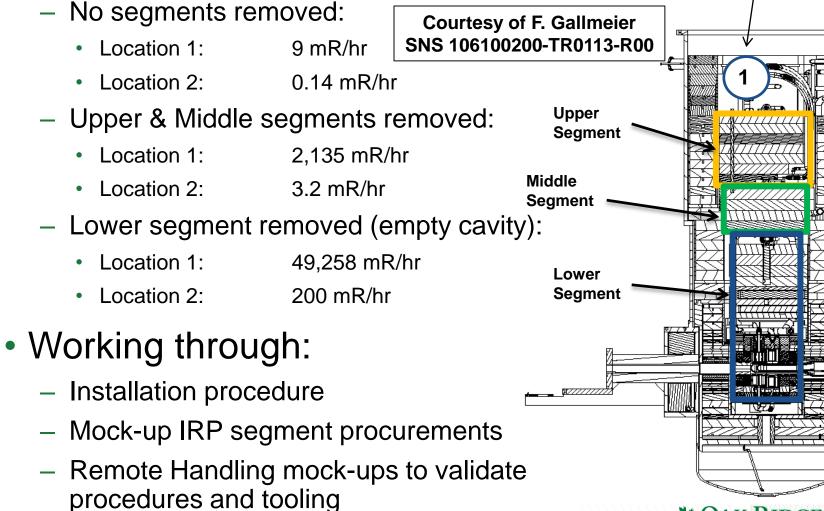
- It is critical to obtain material samples from all used targets, particularly at failure locations, in order to solve target design issues and refine models
- TN-RAM cask availability, Service Bay floor space, target lifetimes, and PIE capabilities drive target disposal before sampling.
- On-site target storage outside of the Service Bay is being developed using available holding Target Holding Container 106070100-M8U-8700-A715 containers.

Recent Inspection of the Target Holding Containers at the Hot Pad

National Laboratory | SOURCE

Challenges – IRP Replacement


- First installation was hands-on
- 62,800 lbs., 15.5' tall, ~4' O.D.



Challenges – IRP Replacement

SPALLATION

National Laboratory SOURCE

