

SNS ASAC Review 2009

SNS Foil Development Program

Robert Shaw

Chemical Sciences Division

<u>Co-authors</u>: Mike Plum, Chris Luck, SNS L. Wilson, ORNL, and C.S. Feigerle (UT/K)

February 24-26, 2009

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Outline

- Foil requirements for the SNS.
- Corrugated, nanocrystalline diamond foils.
- Alpha ranging for foil thickness determination.
- Diamond foil performance at SNS and PSR.
- 30 keV electron beam foil test stand.
- New directions.

Corrugated, Nanocrystalline Diamond Foils

- Prepared by plasma-assisted Chemical Vapor Deposition (CVD) on pre-patterned silicon wafers.
- A portion of the silicon is removed by chemical etching to create a foil-on-ahandle.
- 4 μm carbon fibers are not required for mounting (corrugations instead).
- Foils are in use at SNS and PSR.

- Withstand peak temperatures up to 2500 K ???
- Stripping efficiency of 97% (of intercepted beam)
- Foil set of 11 foils must last 90 day cycle --> 200 hr each
- 20 mm x 12 mm (25 x 17) freestanding foil, single edge support
- Uniform thickness of 280 μg/cm² (~0.8 μm for diamond)

Diamond Film Growth

- Nucleation density is critical due to 1 μm foil thickness
 Nano-seeding
- Microwave plasma CVD
 - Microcrystalline films:
 - 2% CH₄, 98%H₂; 50 torr
 - ~110 minutes @ 1300 W; Ts = 750 °C
 - Nanocrystalline films:
 - 90% Ar, 1-2% CH₄, 8-9% H₂; 130 torr
 - ~55-90 minutes @ 1000 W; Ts = 650 °C

Microwave CVD growth chamber (left) and the plasma ball during 98% H_2 1300 W microcrystalline (center) and 90% Ar, 9% H_2 1000 W nanocrystalline growth (right).

Corrugated Diamond Foils for Flatness

- Thermal expansion mismatch diamond vs silicon
- Foil corrugation method developed

Patterning Process

SiO

Corrugated foils avoid the need for carbon fiber support

LANL/PSR Foil Mount

Foil Thickness from Alpha Ranging

Am-241 alpha spectra upon passage through nanocrystalline diamond foils. The indicated thickness values were determined using SEM images.

Foil Thickness Correlation

Thickness: ± 3% precision

Correlation between diamond foil thickness as determined using SEM images and the energy shift of transmitted Am-241 alpha particles.

SNS Diamond Foil Experience

Integrated SNS charge delivered to target before removal from service for nanocrystalline diamond foils.

<Foil_statistics.xls>

We have not observed any catastrophic foil losses in production mode.

 2500 Coulombs represents about 1 month at design power (but currently only operating at about 700 kW).

BATTEL

Photograph of a nanocrystalline SNS foil (#601; 463 ug/cm2 avg) after experiencing 300 C of injected charge. The lower left corner is curled away from the camera from interaction with the injected and circulating ion beam.

<601 looking upstream.jpg>

SNS Foil 699 after 783 C

Comparison of SNS and PSR

- <u>PSR</u>: 20 Hz, 3.1x10¹³ ppp, 50-70 foil hits/proton, 400 μg/cm²
 - ca. 1.9x10¹⁵ hits/pulse,
 - ca. 3.6x10¹⁶ hits/sec
- <u>SNS</u>: 60 Hz, 1.5x10¹⁴ ppp, 7-10 foil hits/proton, 330 μg/cm²
 - ca. 1.3x10¹⁵ hits/pulse,
 - ca. 7.7x10¹⁶ hits/sec

PSR has comparable hits/pulse and about 1/2 hits/sec of SNS, and is a good surrogate for foil testing.

PSR Foil Experience

Current assessment is that nano-diamond foils perform well in production (without fiber support), but fail catastrophically at high current density.

30 keV Electron Test Stand

- Foil testing has always been a bottle neck, as we needed to rely on commissioned accelerators without disrupting operations
 - Diamond foils, Doped diamond foils
 - Diamondlike Carbon Foils (TRIUMF)
 - Hybrid Boron Carbon Foils (Sugai)
 - Carbon Nanotube Foils
- This instrument was designed to match the foil heating for the SNS base design
 - Injected and circulating beams considered
 - H⁻ pulse length and repetition rate considered
 - Convoy electrons considered

- 1.6 mA/mm² (peak) current required 5 mA in a 1 mm spot capability
- Impractical to match the 27 mm² (rms) SNS injection spot
- Design allows for photography and pyrometry

30 keV Electron Beam Test Stand Schematic

Electron Beam Foil Test Stand Ready for Bakeout

Electron Beam on Diamond Foil

• Snapshot camera without zoom

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Zoom CCD Camera for Foil Photography

CALCULATED FOIL TEMPERATURE

Maximum Temperatures on The SNS Carbon Stripping Foils

New Directions

- New corrugation patterns.
- Growth of Hybrid Boron Carbon (HBC) foils.

Initial Foil Corrugation Pattern

Variables:

- Pitch (25, 50, 100 L/in)
- Radius (1, 2, 3 mm)
- Coverage (40, 60%)

New Lithography Mask Patterns

= Flat @ RT
= Not bad

#601

UT-BATTELLE

Hybrid Boron Carbon (HBC) Foils

- Isao Sugai has reported HBC foils with excellent life times for proton beams.
 - 20-25% Boron
 - 256 hr lifetimes vs 62 hr for nano-diamond
- Limitations: Thickness < 400 μg/cm² Pinholes Carbon fiber mounting
- We have begun to prepare similar foils using our PA-CVD growth reactor.

Graphite	Graphite/Boron
	*
Sul	bstrate
	-

KEK Foil Comparison: HBC and Nano-diamond

Hybrid Boron Carbon (HBC)

SNS nanocrystalline diamond

- Single HBC foil (417 µm/cm²) with SiC fibers
- 650 keV dc H⁻ beam (3.5 mmφ)
- 90 µA; T = 1970 K
- 256 hr
- 30% thickness reduction

- SNS nanocrystalline foil #527 (433 µg/cm²) without fibers
- 130 μ A; T = 1950K
- 21 hr
- 6.5% thickness reduction
- "Inside curling"

(I. Sugai, ICFA5; Nashville, August 08)

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY SNS ASAC Review, February 24-26, 2009

25

Planned Growth of HBC-like foils

- Utilizes the same growth reactor as for diamond foils
- Si substrate to retain patterning and foil "handle" after chemical etching
- Plasma erosion should create boron and carbon in the vapor phase
- Foil composition varied by pressed ring composition
- Material properties may differ from Japanese foils

SNS Foil Development Program Summary

- Corrugated, nano-diamond stripper foils have performed well at SNS and PSR.
- Improved techniques for growth and characterization have been developed.
 - Nano-seeding for nucleation
 - Alpha ranging for thickness determination
- For an upgraded SNS, different materials may be needed.
- An e-beam test stand has been assembled to increase throughput for foil lifetime testing for a variety of materials.
 Doped diamond, HBC, Carbon nanotubes
- Growth of another material has begun HBC.

Thank You !

SPALLATION NEUTRON SOURCE 9

Graphite Evaporation

P. Thieberger, BNL, 2000

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

