ASAC 2009 Presentation

Accelerator R&D Activities V. Danilov

SNS AP group

Talk outline

- Instabilities + Space Charge
- Laser stripping
- Sequence of developments as SNS ring intensity increases
- Nonlinear accelerator lattices with regular motion and large tune spread to kill instabilities and mitigate space charge effects

Instability-related Features of Ring Design

Common high intensity design features:

High energy spread design and broadband feedback provision +

For eP instability mitigation:

- a) Electron collection near stripper foil;
- b) Experiments of 1999 showed significant reduction of electrons in a coated spool piece of PSR vacuum chamber. This led to a decision to coat all pieces of VC with TiN;
- c) Solenoids near the regions with high loss;
- d) Clearing electrode near the stripper foil;
- e) Electron detectors for electron accumulation study.

Instability-related Ring Design Features (cont...)

Extraction kicker:

- First estimations show thresholds around 1E10^14 protons.
- BNL team redesigned and remeasured kickers, lowered transverse impedance by factor 2.

Injection kicker and resistive wall:

- Impedances are dangerous below the integer tune, may cause closed orbit instability.
- Chamber coated with Cu (~0.7 um), and TiN (~0.1 um), to mitigated resistive wall and e-p instability.
- Advanced estimation of transverse impedance was done.

14 units

coated ceramic inside____

8 units

Choice of correlated painting for SNS

- a) correlated
- b) Anti correlated

Upper plots –correlated, Lower for plots – anti correlated. Conclusion – anti correlated is much worse because of distributions with tails

lc in to

aı

J. Beebe-Wang, et al, EPAC2000

Painted beam (correlated painting)

Not an ideal profile – we need constant density elliptical beam for target.

Correlated painting creates not self-consistent beams Anti correlated painting – not self-consistent during all moments of injection. Is there any injection that creates space charge self consistent distributions at all moments of injection?

Yes (see next slide)

3D self-consistent distribution painting

Bunch shape scanning (courtesy Z. Liu)

Longitudinal shape of the bunch drastically affects the ep instability. We were able to cleanly extract 1.13*10¹⁴ ppp after making the trailing edge steep by changing the phase of 2nd harmonic RF

Maximal charge extracted was 1.3*10¹⁴, but with large loss

Bunch length scanning 18μ C

12.5 kV main 2 RF stations (left), and 5.5 kV (right) for flat beam the e-p instability disappears

E-p Instability with and w/o Chromaticity

Zero chromaticity (left), and the natural one (right). One can see a dramatic change of the instability spectrum

Stripping Foil Limitations

- The SNS will use 300-400 μ g/cm² Carbon or Diamond foils
- Two important limitations:
 - Foil Lifetime: tests show rapid degradation of carbon foil lifetime above 2500 K, yet we require lifetime > 100 hours
 - 2. Uncontrolled beam loss: Each proton captured in the ring passes through foil 6-10 times: leads to uncontrolled loss of protons
 - Presently, injection area is the most activated at SNS

SNS Foil Glowing 160 kW

Three-Step Stripping Scheme

 Our team developed a novel approach for laser-stripping which uses a three-step method employing a narrowband laser [V. Danilov et. al., Physical Review Special topics – Accelerators and Beams 6, 053501]

Approach that Overcomes the Doppler Broadening

 By intersecting the H⁰ beam with a *diverging* laser beam, a frequency sweep is introduced:

- two-state problem with linearly ramped excitation frequency shows that the excited state is populated with high efficiency
- Estimations for existing SNS laser (10 MW 7 ns) gave 90% efficiency
 Managed by UT-Battelle

Laser Stripping Assembly

Magnets (BINP production)

Optics table (1st experiment) 1st experiment – failed 2nd 50% efficiency achieved (v. chamber failure afterwards) 3rd – 85% achieved 4th – 90 % achieved

> Straightforward use is costly – laser power needed I s 10 MW*0.06=.6 MW

Laser power reduction – intermediate experiment

 Matching laser pulse time pattern to ion beam one by using mode-locked laser instead of Q-switched

~ x25 gain

 Using dispersion derivative to eliminate the Doppler broadening due to the energy spread

~ x10 gain

• Recycling laser pulse

~ x10 gain

Vertical size and horizontal angular spread reduction

~ x2-5 gain

By combining all factors the required average laser power can be reduced to 50 – 120W, which is within reach for modern commercial lasers.

Mode locked laser parameters

Parameter	Offered	Comment
Wavelength	355nm	
Energy	30 uJ	
Pulse Duration	10 μs	>10µs possible with programmable wa∨eforms
SLM Oscillator	mode locked	
Temporal Profile	flat envelope	
Beam Diameter	~5mm	
Spatial Profile	Like Powerlite	Harmonics at laser
Beam Divergence	Like Powerlite	
Repetition Rate	10 Hz/402.5 MHz	Macropulse rate / micropulse rate
Shot to Shot Stability	3% RMS	for pulse envelope
Polarization	Vert	
Jitter	<50ns	Macropulse envelope
Interface	GUI	
Laser Head size	3' x 6' x 13"	Larger table available for upgrades
Cabinets	CAB35	
Electrical Requirements	30A 1 phase	
Water Requirements	220V 2 X Powerlite	

Fabri-Perot and Inside Crystal Conversion Schemes

3 PZTs for alignment, length adjust

Design and production: Light Machinery Finesse: ~ 37 Designed power amplification factor: ~ 10 R > 92% at 355 nm

Inside Crystal Conversion Flat mirror is transparent to fundamental harmonics and reflects 355 nm light

Optical Setup of Ring Cavity (Z. Zhao, Y. Liu)

Power amplification factor 13 (low rep rate)≈100 in typical setup obtained in red light with the test 80 MHz laser

Approach to the solution of the problem

Laboratory frame

Particle rest frame

"Froissart-Stora" in presence of field

Parabolic coordinates. Quantum numbers: (n₁, n₂, m)

for the Department of Energy

Presentation_name

2008 Progress in Laser Stripping

- Laser room is under preparation for experiments the new laser and other equipment is about to be installed there;
- Test Fabri-Perot cavity produced amplification about 30 for red light;
- Crystal scheme was developed, crystals ordered for experiments;
- A code (ORBIT module) was developed to calculate and optimize the stripping efficiency in arbitrary magnetic and electric field (an important step for final injection design)

Large Picture of Ring Developments

Introducing very large tune spread without resonances – "Integrable" Accelerator Lattices

How solutions look like?

Examples of 2D integrable systems with strongly coupled motion

Family of solutions is very rich – one can create finite number of resonances. Phase space near resonance below

Benefits from "Integrable" optics use

- Extreme tune spread 30-50% of betatron tune
- No resonances, no particle loss
- Suppression of instabilities and space charge effects
- Order of magnitude jump in beam brightness
- Reduction of vacuum chamber and magnet size – order of magnitude money savings for future projects for future projects

Conclusion

- SNS developed a successful approach for the ring to get above 10¹⁴ ppp (or 1 MW)
- New physics and technology is under development to go to 3 MW
- Nonlinear "integrable" accelerator optics is advanced to possible practical implementation to introduce large spread without resonances

