PUP Overview, Management and Organization

Barbara Thibadeau

Construction Project Manager

Outline

- Overview
 - PUP Scope
- Progress so far
 - Organization
 - WBS
- Project Management
 - Risks and Concerns

PUP = Energy Increase

- Power Upgrade Project (PUP) will increase beam energy to 1.3 GeV (30% increase)
- Doubling SNS Power requires the Power Upgrade Project (PUP) AND R&D AND several Accelerator Improvement Projects to allow increased beam current (we call these CUAIPs). The latter will increase the beam current and implement target improvements which will result in the remaining power increase to >2MW

Notional CUAIP Funding Profile

						Estimated Total
CUAIP Title	FY2011	FY2012	FY2013	FY2014	FY2015	Cost (\$K)
CUAIP.01 Ion Source AIP	0	0	1,890	928	0	2,818
CUAIP.02 LEBT AIP	0	0	1,925	865	0	2,790
CUAIP.03 HVCM Upgrade AIP	0	1,844	2,369	769	0	4,982
CUAIP.04 Warm Linac Diagnostics AIP	0	1,347	733	627	12	2,719
CUAIP.05 Ring Current Diagnostics AIP	0	0	1,756	2,343	0	4,099
CUAIP.06 Laser Stripping	0	0	419	3,527	0	3,945
CUAIP.07 Ring Injection Dump Upgrade AIP	0	0	1,317	1,416	1,186	3,920
CUAIP.08 Inner Reflector Plug and Moderator AIP	655	1,746	7,663	465	157	10,687
CUAIP.09 Proton Beam Window AIP	0	654	465	633	110	1,862
CUAIP.10 Mercury Target AIP	0	2,367	7,956	3,406	2,081	15,810
CUAIP.11 Target Systems Upgrade AIP	1,346	5,121	0	0	0	6,468
CUAIP.12 Integrated Controls for Beam Current Upgrades	0	427	956	1,502	0	2,884
Total	2,002	13,505	27,447	16,481	3,548	62,984

• These data have not been looked at in several years

PUP Scope

- INCLUDES:
 - upgrades to the superconducting linac and associated support systems
 - upgrades to the Ring and associated support systems
 - upgrades to the integrated control systems for the SCL, Ring and new substation.
 - expansion/extension/modification of the site infrastructure to support the above upgrades
- DOES NOT INCLUDE
 - upgrades to increase beam current
 - R&D

SCL PUP Scope

Procure/fab and install 9 cryomodules to fill out the SCL

Provide RF power for these new cryomodules

6 Managed by UT-Battelle for the U.S. Department of Energy

DOE SC Review December 8–10, 2009

Ring PUP Scope

DOE SC Review December 8–10, 2009

Cost Range

WBS	Description	Est. Minimum Cost (\$ in M)	Est. Maximum Cost (\$ in M)
3.0	Power Upgrade Project	89.6	96.1
3.1	Project Support	5.8	5.8
3.2&3.3	Superconducting Linear Accelerator (SCL) Systems	66.0	66.5
3.4	Ring Systems	10.7	13.9
3.5	Integrated Controls Systems	5.3	6.0
3.6	Facility Modifications	1.8	3.8

Critical Decision Dates

Decision	CD-1	Current Goal
CD – 0 Approve Mission Need	Nov 04A	Nov 04A
CD – 1 Approve Alternative Selection and Cost Range	Jan 09	Jan 09A
CD – 2 Approve Performance Baseline	Dec 11	Jan 11
CD – 3A Approve Start of Long-Lead Procurements	Jan 12	Oct 11 (klystrons, transmitters, transmitter controls waits for FY12 funding)
CD – 3B Approve Start of Construction	Dec 12	Aug 12
CD – 4 Project Complete	Dec 15	>Dec 15 (\$16M is a lot to spend in one year)

Project Status

- Jun09- Started getting ready in anticipation of FY10 funding (\$2M arrived Jan10). Since then we've:
 - Established the project team
 - Identified the resources required to complete CD-2 requirements
 - Arranged weekly project meetings
 - Detailed the WBS structure and opened account numbers

Current Activities

- Updating CDR assumptions to current operating experience
 - e.g. CDR assumed 12 klystrons/modulator. We are currently operating at ~10/modulator. Hence, PUP scope includes 4 modulators.
 - e.g. CDR assumed piezo electric tuners and HEBT cavities might be needed. They are not and they are not in the PUP scope.
- Defining interface points between WBS elements
 - e.g. where does Ring Systems scope end and Integrated Controls scope begin?
- Identifying CUAIP and STS interfaces
 - e.g. new couplers will be able to handle higher current
- Identifying infrastructure (e.g. space, cooling, electrical) requirements
 - e.g. adding 4 modulators will require:
 - additional cooling skid which will require additional space and increase demand on DI water system

Plan to CD-2- very aggressive

	FBB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB
Identify STS and CUAIP PUP dependencies													
Final design for direct (or near copy) items													
CDR update complete													
Preliminary Design													
Develop cost estimates and schedule													
Preliminary Design Review													
Modify baseline based on recommendations from the review													
Develop contingency assessments													
Complete Risk Analysis													
Update PEP													
Update Hazard Analysis													
Internal CD-2 Review													
Incorporate comments from internal review													
DOE SC CD-2 Review										0			
CD-2 Approved											0		

 Guidance from Program Office in Dec 09 was that CD-2 needs to be approved by Jan 2011 in order to get into FY13 budget

Risks and Concerns

Risk	Mitigation
Technical Risk	
EXTREMELY LOW Know NOW how to achieve 1.3 GeV	Including an additional modulator in the baseline (4 vs 3) assumes no improvement from current modulator performance
Resource Risk	
Expertise required for PUP is the same expertise required for SNS reliability	SNS operations improving less time fighting fires=more time for other things.
	Key areas where we need to augment the staff already identified. Once the detailed baseline is established, we'll have the full set of resource requirements
	Conservative schedule (earlier start did not result in earlier completion) allows less than 100% availability of these critical resources.

Risks and Concerns (con't)

Risk	Mitigation
Schedule Risk	
Planning for the capability to deliver >2MW could delay the schedule.	
PUP is extremely easy to accomplish if accomplished in a vacuum.	
Desire is to implement decisions that avoid (or minimize) modifying or replacing or relocating equipment to accommodate CUAIP or STS and thus disrupting operations	Identifying decision points and proceed with the best technology at that time

Summary

- PUP has a talented team and low technical risk
 - These are the people currently operating the facility and, in many cases, the people who were part of the initial construction
- Excellent odds for success!

