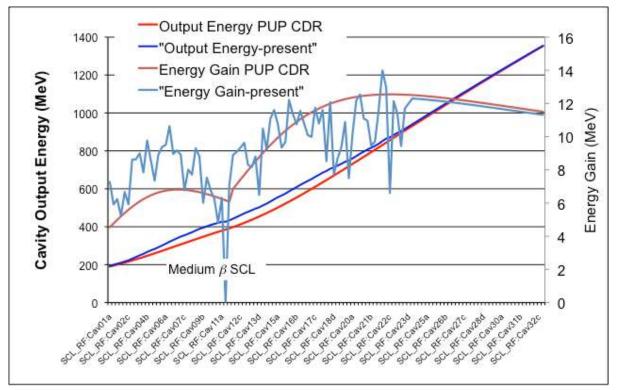

PUP – Technical Considerations

John Galambos

Accelerator Physics Group Leader, PUP Technical Director

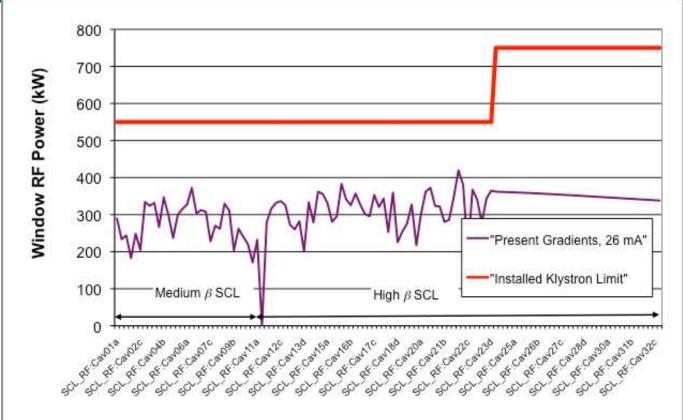
High Level Parameters

Parameter Comparison	SNS Project Baseline	Present Operation (best to date)	Energy Upgrade (PUP)	PUP + CUAIPs
Beam kinetic energy, MeV	1000	928	1300	1300
Design goal beam power, MW	1.4	1.03	1.8	3
Minimum beam power, MW	1			2
Linac beam duty factor, %	6	5	6	6
Average H- current, mA	26	24	26	42
Peak H- current, mA	38	38	38	59
Linac beam pulse length, ms	1	0.82	1	1


- PUP is an energy upgrade only, with a 30% power increase
- CUAIPs provide another ~ 60% power increase
- Make sure PUP in-tunnel components can handle current upgrades for the U.S. Department of Energy

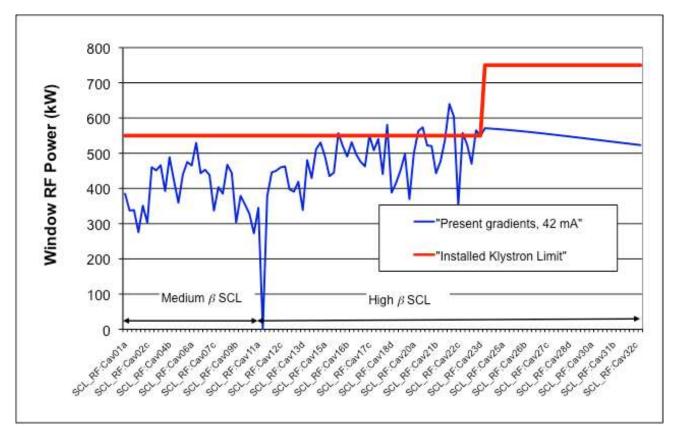
Strategy for Upgrade Plans

- Original CDR was based on extrapolations from SNS baseline design parameters
 - We are not operating the accelerator exactly as per design
 - E.g. beam energy is 930 MeV
- We have data now on the operational requirements for 1 MW beam
- Linac Requirements flow
 - − Beam parameters → RF requirements → modulator requirements
- Electrical and cooling requirements for PUP are also being prepared based on present experience
 - Magnets, RF etc.



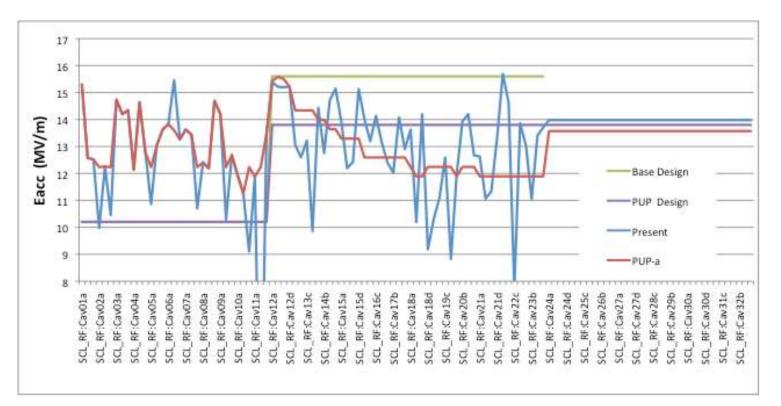
Superconducting Linac, Energy: Where Are We Now?... Good shape

- Existing average high beta cavity gradient is close to that needed to reach 1.35 GeV with 9 cryo-modules
 - New high beta cavities need E_{acc} = 14 MV/m
 - Present high beta average = 12.8 MV/m, PUP CDR assumed 13.8 MV/m


Superconducting Linac, RF Power: Where Are We Now?... Good shape for PLIP

 Using the PUP cavity gradients, the present RF equipment is sufficient for 26 mA

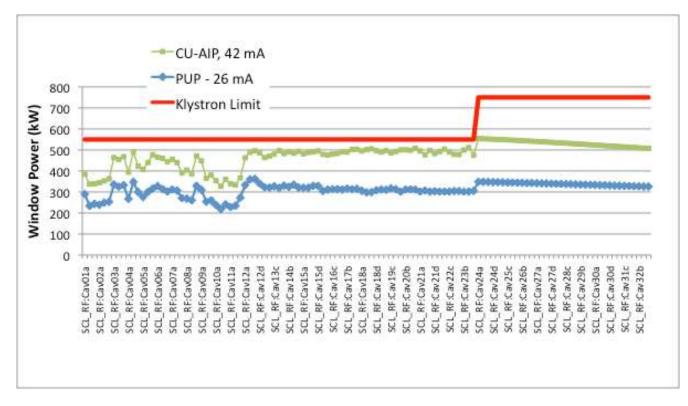
Superconducting Linac, RF Power: Where Are We Now? ... *For CUAIP some challenges*


 Simply running cavities as we do today presents RF challenges at higher currents

- Klystrons, couplers

6 Managed by UT-Battelle for the U.S. Department of Energy

SCL Gradients: Strategy to Minimize Impact of Higher Power


- Tailor the operational voltage to minimize the impact on the RF power requirements
 - Needs improvements of some existing cavities (plasma processing)
 - New cavities will operate at higher gradients than existing ones

7 Managed by UT-Battelle for the U.S. Department of Energy

DOE SC Review December 8–10, 2009

Superconducting Linac: RF Power

- Minimize the RF Impact for higher current
 - Plasma process the poor performing cavities
 - Decrease gradients of higher performers

New cavities should be capable of operating at higher power for the U.S. Department of Energy

December 8-10, 2009

Superconducting Linac Limits: Energy and Power

- We can get 1.3 GeV operating with similar cavity gradients as we operate with now
 - Also get 50 MeV extra as reserve for problem cavities
 - Energy itself is not a big stretch
- Existing RF power equipment is adequate for PUP (26 mA), but CUAIP (42 mA) is more challenging
 - An optimized scenario is identified to mitigate the RF requirements
 - Modest coupler R&D efforts now for equipment to be installed in the linac will allow 42 mA operation with minimal operational impact
 - Also need cavity plasma processing to improve performance of poor existing cavity performers for 42 mA operation

Ring Injection is More than a Simple Scaling Exercise

- This is a complicated part of the Ring
- The initially installed SNS project equipment had issues
 - We have learned lessons and developed modeling capability in the process of improving this equipment

Summary

- Identified a path forward based on operational experience
- The PUP energy upgrade does not require significant increase over presently achieved equipment performance

