Accelerator Mechanical Engineering Activities

G R Murdoch

Engineering Group Leader

Neutron Facilities Development Division

Neutron Facilities Development Division

Engineering Group Mission

- Provide a professional engineering service to the SNS Project
 - Project/Design Engineering
 - Accelerator
 - Target
 - Beamline Instruments
 - Engineering Analysis
 - Engineering Systems Support
 - Vacuum, Accelerator Systems, Magnets, Beam Dumps, Target Assembly, Utilities, Remote Handling, Shutters, Reflector & Core Vessel Assemblies
 - Electrical Engineering (instrument oversight)
 - Document Control
 - Fabrication Support

Mechanical Engineering Management

- Accelerator design workload managed via a detailed spreadsheet of jobs (~70 listed)
- Prioritized by RAD Division Head & Group Leaders, monthly meeting with Senior Management to review all project design work (Accelerator, Target & Beamline Instruments)
- Typical prioritization:
 - Breakdown, operational support
 - Shutdown work
 - Accelerator Improvement Projects (AIP)
 - High, Medium & Low priority jobs
- Continually reviewing design process
 - Design criteria documents
 - Design procedures etc
- Currently 8 Engineers & 7 Designers working on accelerator work

- Front End
 - Ion Source
 - Review & update baseline Ion Source drawings Status in progress
 - High power external antenna source Status in testing
 - Helicon H- source Status in design
 - LEBT
 - Modified electrostatic LEBT -*Status in testing*
 - Magnetic LEBT
 - Solenoid magnets -Status in design
 - RFQ
 - RF coupler support mounts -*Status in design*

High Power External Antenna Source

Helicon H- Source

Conceptual Design of Magnetic LEBT Solenoid

- DTL & CCL Isolation Valve Failures
 - CCL and some DTL sector isolation valves were known to leak for an extended period of time
 - Valves of 2 difference styles from 2 different manufacturers (MDC and VAT) are leaking therefore a common mode of failure can be reasonably discounted
 - Work to be undertaken on CCL-4 prompted the repair of the CCL-4 gate valve in order that the leak tightness of the fast valve could be confirmed prior to commencing this work
 - CCL-4 Isolation Valve Failure
 - Note apparent loss of section of O-ring at bottom
 - Valve gate showed some localized discoloration in an area adjacent to the O-ring gap
 - Discoloration, slightly yellow or straw coloring, possibly indicating a temperature of about 280-340°C
 - Potential Causes:
 - Beam induced?
 - High radiation?
 - High temperature?
 - Status Investigation Underway
 - Metal valves
 - Shielded valves
 - Re-design withdraw valve further into body

Failed CCL-4 Valve

SCL Linac

- New Cryomodule Procurement Activities
 - Preparing Drawing Package Status in progress
- 10CFR851 Compliance Issues -Status in progress
- Cryomodule Test Cave completed
- Horizontal Cryostat Status in manufacture

Horizontal Cryostat 3D Model

X-section Horizontal Cryostat Feedthrough

• HEBT

- Collimator remote vacuum clamps Status installed
- Modified Helicoflex Seal

Clamp Mechanism Attached to Collimator Wall

Ring

- RID Septum Magnet Modifications (AIP) Status completed
- New Vacuum Vessel for RID Septum Magnet (AIP) Status ready to install
- New primary foil stripper assembly (AIP) Status in design
- New secondary foil stripper assembly (AIP) Status in design
- Collimator remote vacuum clamps (based on HEBT but different) Design completed

Magnet Measurement after Pole Modifications

Conceptual Design of New Secondary Foil Stripper

• RTBT

- New HARP Mechanism Status in manufacture
- Collimator remote vacuum clamps (based on HEBT but different) – Status prototype manufactured

New HARP Mechanism

Q30 & HARP Mechanism Installed in RTBT

Q30 & HARP Assembly 3D Model

New HARP Mechanism & Vessel 3D Model

- Beam Instrumentation
 - RID view screen Status Installed
 - MEBT beam stop (AIP) Status in manufacture
 - MEBT scraper Status in design
 - MEBT wire scanners Status in design
 - RTBT phosphorous flag Status in design
 - Ring electron beam profile monitor (AIP)
 Status ready to install
 - Beam shape monitors (SCL & HEBT) -Status ready to install
 - IR camera mounting for electron beam dump - Status ready to install
 - DTL wire scanners Status in design

RID View screen Installed

3D Model of RID View screen

Typical Wire Scanner Design (common actuator)

MEBT Beamstop

Ring Electron Beam Profile Monitor

Summary

- New organization with design engineering centralized
- Large workload that continues to expand
- Working with RAD to improve prioritization of accelerator work
- Talented team of engineers with several younger team members being mentored
- Design work in progress covers most key areas of the accelerator
- Improving engineering procedures and adopting across mechanical engineering function
- Busy & exciting times ahead!

