
Linac Modulator Performance and Upgrades

David E. Anderson, presenter

TEAM:

Roy Cutler, Jim Hicks, Jeff Mize, Vladimir Peplov, Ken Rust, SLAC Collaborators, Mark Wezensky

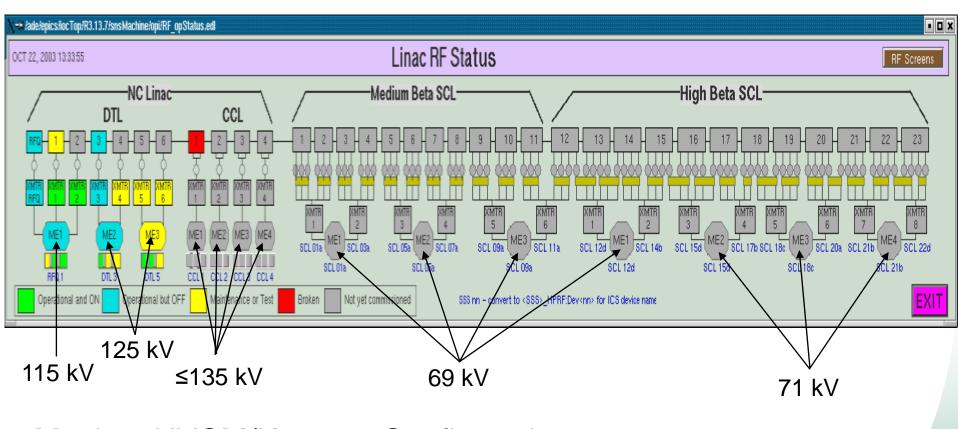
High Voltage Converter Modulator (HVCM) Talk Overview

- Introduction
- System Overview
- Operational Statistics
- Historical Perspective
- Recent Fire Discussion/Root Cause
- IGBT Reliability Improvements
- SCL Modulator Enhancements
- •Future Areas of Development
- Conclusion

Why this technology?

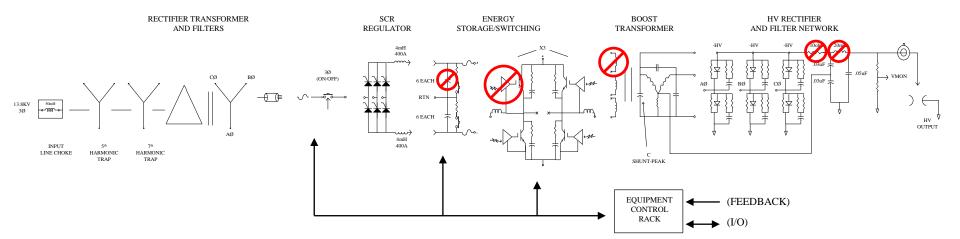
•Compact topology, competing technologies require more volume and building \$\$

- •High efficiency design should lead to higher reliability (less thermal stress)
- •Variable pulse width and rep rate capable
- •Active compensation of pulse possible (droop, etc.)
- Crowbar not required
- •Drives multiple klystrons, minimizing # of units
- Modular
- Low cost


Development and Manufacturing Challenges and Limitations (in retrospect)

•Exceed capabilities of circa-2000 power devices

- Insufficient engineering design margins
- •MTBF analysis based on ideal component lifetimes, actual lifetimes fell short of assumptions
- Manufacturing challenges
 - Magnetics design deficiencies
 - Workmanship/quality concerns
- •Expedited schedule didn't allow sufficient testing time,
- release to manufacturing was premature
- •No prototype effort on SCL-variant of system
- •Failure modes not sufficiently addressed
 - Power semiconductor fault modes
 - Materials choice
 - Catastrophic capacitor failures not contained

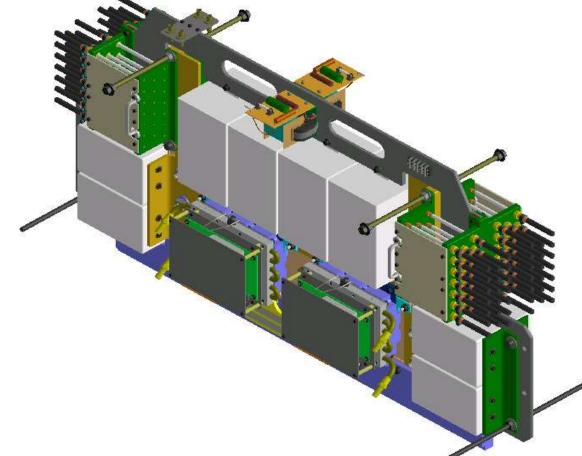

Cavity/Klystron/Modulator Layout

Multiple HVCM/Klystron Configurations
Peak Power 11 MW, Average Power 1 MW design

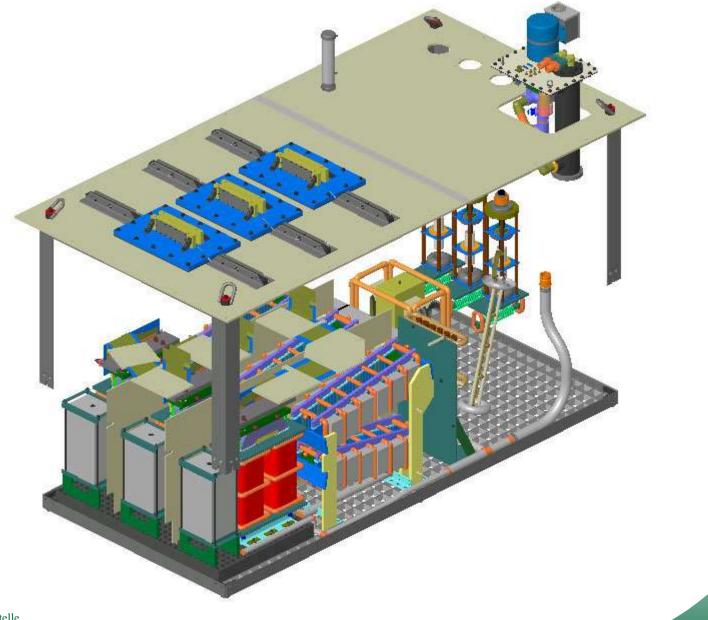
HVCM Simplified Block Diagram

RECTIFIER TRANSFORMER AND FILTERS

SCR REGULATOR


HIGH VOLTAGE CONVERTER/MODULATOR

EQUIPMENT CONTROL RACK


HVCM IGBT Switch Plate Assembly

•20 kHz switching at ±1200 V •Eupec FZ1200R33KL2C or Mitsubishi CM1200HC-66H

HVCM Basket Assembly

8 Managed by UT-Battelle for the Department of Energy

SNS Accelerator Advisory Committee Presentation – January 23, 2008

HVCM Known Problem Areas

- •System reliability not meeting requirements
- •IGBT drive parameters optimized for speed, not fault tolerance
- •Combustible materials on IGBT switches
- Insufficient voltage (presently) on SCL modulators to provide adequate RF control margin, reduce cavity fill time
- Pulse too short on SCL modulators to achieve 1 ms beam due to fill time limitations
- Modulator droop further limits SCL modulator performance

•Introduction

System Overview

Operational Statistics

Historical Perspective
Recent Fire Discussion/Root Cause
IGBT Reliability Improvements
SCL Modulator Enhancements
Future Areas of Development
Conclusion

HVCM Operational Hours

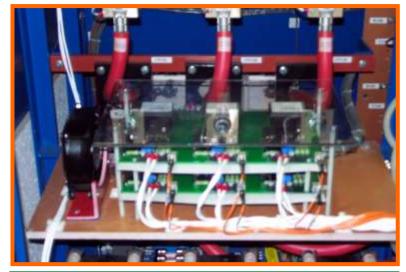
SYSTEM	SCR Failure*	Mod. Failure*	Hours	
DTL-Mod1	3/2	2/ <mark>6/</mark> ð	17,920	
DTL-Mod3	2	4	16,370	
DTL-Mod5		1/ ð	16,340	
CCL-Mod1		2/1	15,390	
CCL-Mod2	1	4/ Å	15,400	
CCL-Mod3	1/1	4	14,800	
CCL-Mod4		1	14,420	
SCL-Mod1	1	1/3	14,370	
SCL-Mod5		1	14,470	
SCL-Mod9		3/ Å	12,850	
SCL-Mod12	1	2	14,130	
SCL-Mod15	1	1	13,880	
SCL-Mod18		1/1	13,420	
SCL-Mod21		2/5	13,540	
RFTF Mod	2	1/ ð	2,890	
TOTAL	11	11/33	208,100	

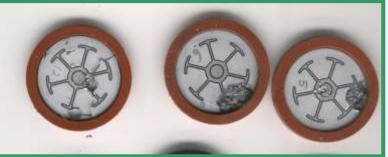
*failure >1 hour downtime

- Current as of January 7, 2008
- Mostly 30 Hz operation
- All recent modulator failures* in last since April 06 shown in RED, å=fire event
- Mod failure rate increasing
- SCR previous failure rate MTBF=21,000 hours, 33,200 hours since April 06
- Including LANL unit's operation, ~210,000 hours total
- MTBF averages 4000 hours, up from 3000 hours previously

HVCM Failure Statistics since 4/06

- 20 IGBT Switch Plate failures
 - 5 Fire events, more info to follow
 - 2 due to failed driver cards
 - Remainder due to IGBT shoot-thrus and insulation degradation
- 7 Water leaks, 4 of which attributable to zinc leaching of fittings
- 4 SCR failures
- 2 Control Chassis failures
- 1 choke and 1 boost transformer failure (none since replacement w/ Stangenes units)
- 1 miscellaneous failure




Introduction
System Overview
Operational Statistics
Historical Perspective
Recent Fire Discussion/Root Cause
IGBT Reliability Improvements
SCL Modulator Enhancements
Future Areas of Development
Conclusion

HVCM History – SCR Issues

- Early Operations revealed SCR reliability problems
 - Replaced hard-fire cards to provide more robust gate signal
 - Replaced snubbers w/ noninductive resistors
 - Installed fast overcurrent protection
 - Insulated gate leads (coronainduced failures)
 - Installed SOLA line conditioners
 - Other misc. upgrades
- Completed FY05
- Significant MTBF increase (order of magnitude) since upgrades

HVCM History – Modulator Upgrades (AIP02)

- Higher duty cycle revealed system limitations, SCL IGBT commutation current issues
 - Retuned SCL resonant circuit parameters
 - Installed new magnetics
 - Installed Dynamic Fault Detection Chassis (DFDC)
 - Protects transformer saturation

FLUX

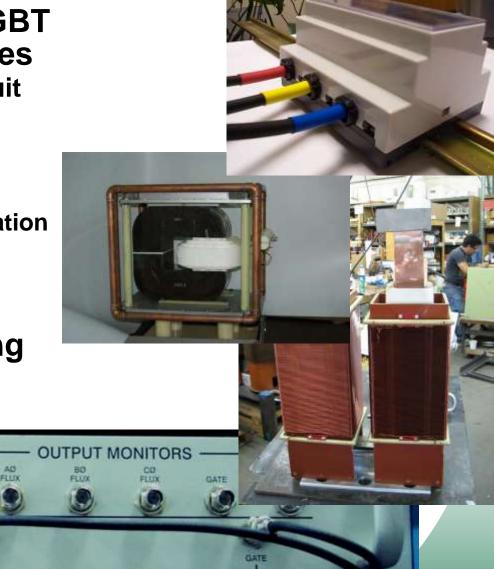
DYNAMIC

FAIIIT

VCATHODE

VCATHODE

- Protects from dV/dt events
- New Rogowski probes
- Real time signal monitoring


FLUX

INTERPULSE

• Completed FY07

FLUX

SYSTEM

15 Managed by UT-Battelle for the Department of Energy

RESET

SNS Accelerator Advisory Committee Presentation – January 23, 2008

INPUTS

HVCM History – AIP02 Remaining

- Complete installation of HEBT Modulator
 - Beamstick loads for full average power operation
 - Characterize components, new IGBTs, etc. off-line
- New gate drive development
 - Active/Passive anti-saturation
 - Improve MTTR and reliability
 - Improve noise immunity
 - More later...

16 Managed by UT-Battelle for the Department of Energy

SNS Accelerator Advisory Committee Presentation – January 23, 2008

Introduction
System Overview
Operational Statistics
Historical Perspective

Recent Fire Discussion/Root Cause

IGBT Reliability Improvements
SCL Modulator Enhancements
Future Areas of Development
Conclusion

HVCM Recent Fires

- 5 Fires to-date
- Collateral damage and long recovery times
- 3 primary causes
 - Open air arcing between different potential surfaces
 - Corona degradation of insulation leading to failure
 - Capacitor failure

HVCM Recent Fires – Arcing

- 1st fire, none since, in RFTF
- Workmanship or residual dirt believed responsible
- Repeated arcing acted as ignition source for combustibles
- Corrected with improved training of assemblers, no faults w/ same root cause since (Jan 07)

HVCM Recent Fires – Insulation Degradation

- Cause of 2 fires and likely many of the IGBT failures
- Original design relies on single layer of DMD to insulate cooling tubes from different polarity bus
- Interference fit between tube and bus compresses DMD and can cut material if sharp edges present
- Corona degrades insulation over time, resulting in arc event
- Insulation double, short-term sol'n., cutout long-term

20 Managed by UT-Battelle for the Department of Energy

SNS Accelerator Advisory Committee Presentation – January 23, 2008

HVCM Recent Fires – Capacitor Failure

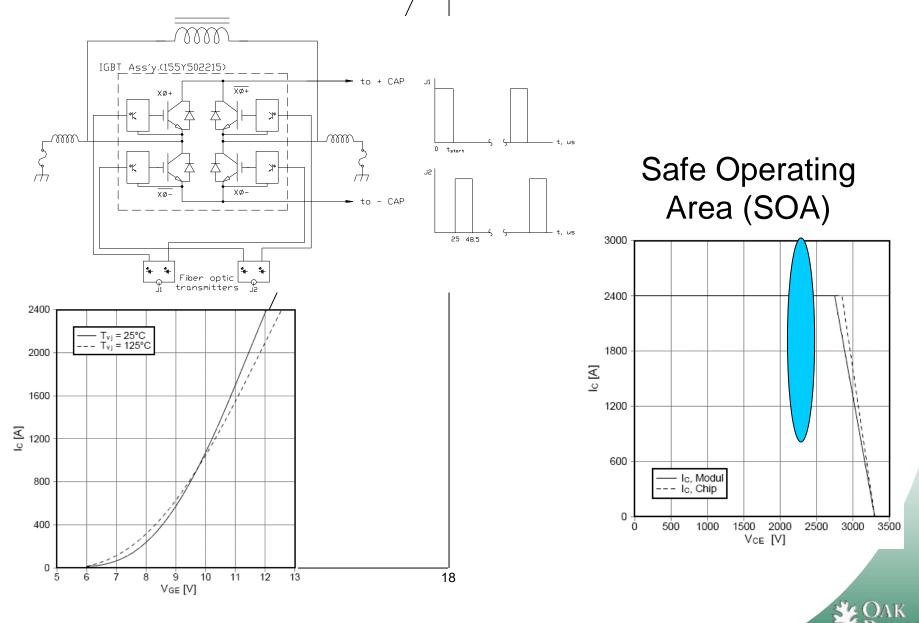
- Cause of 2 fires, other failures due to collateral damage
- Likely internal cap failure and subsequent energy dump
- Cap MTBF 500,000 hours @ 2.4 kV, 168 units
- Path forward
 - Improved lifetime capacitors
 - Non-flammable impregnants (identical cap with rapeseed oil in-house)
 - Reconstituted mica/other technologies?
 - Self-clearing technology?
 - AIP in place to address this concern

21 Managed by UT-Battelle for the Department of Energy

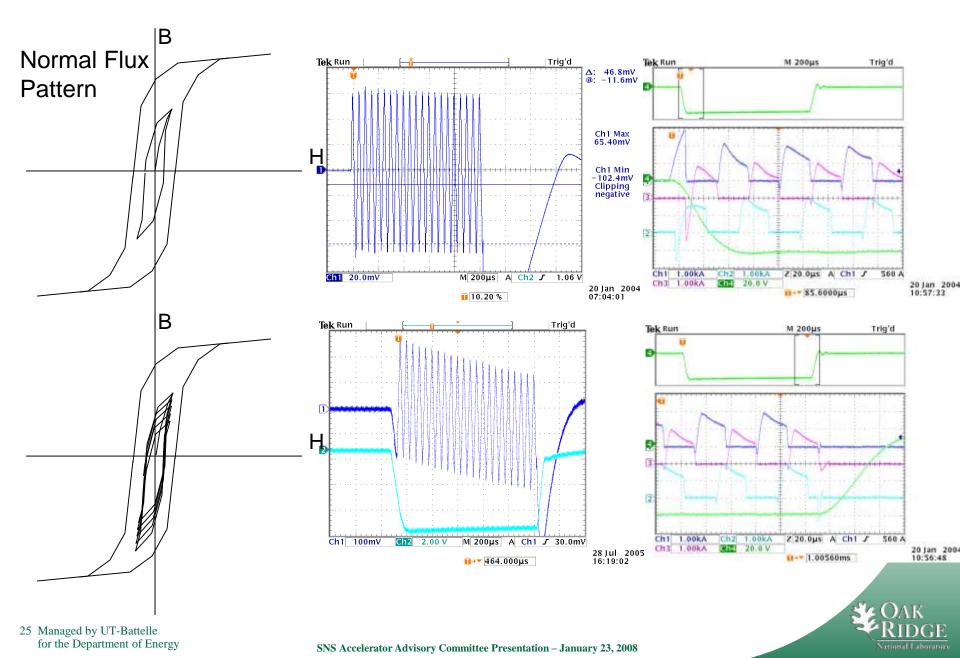
SNS Accelerator Advisory Committee Presentation – January 23, 2008

HVCM Recent Fires – CO2 Suppression

- Dedicated CO2 system installed
- Smoke detector installed
- EPICS screens updated
- Manual discharge from CCR if smoke detector trips
- Prevent or minimize system damage



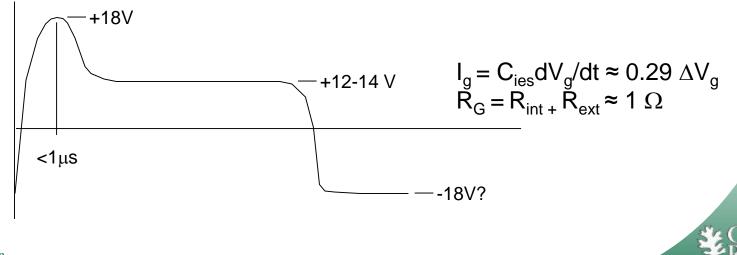
Introduction
System Overview
Operational Statistics
Historical Perspective
Recent Fire Discussion/Root Cause
IGBT Reliability Improvements
SCL Modulator Enhancements
Future Areas of Development
Conclusion


IGBT Gate Drive – Shoot Thru Fault

24 Managed by UT-Battelle for the Department of Energy

SNS Accelerator Advisory Committee Presentation – January 23, 2008

IGBT Flux Saturation

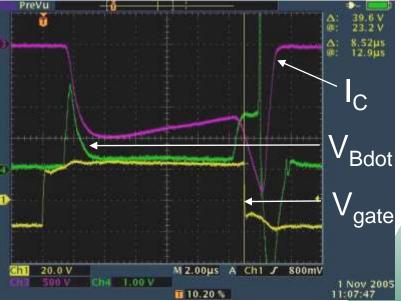


IGBT Gate Drive Prototype 1 Active

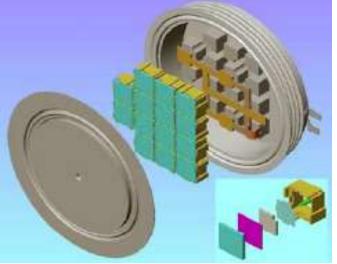
- Switch plate module w/ new drives in lab for testing
- Full H-bridge testing complete

IGBT Gate Drive Prototype 2 Passive

- "Picket Fence"-style drive to reduce fault IC
- VCO to pass real-time gate signal over fiber to scope?
- Collaboration pending with SLAC to independently investigate first two bullets, alternatives
- Full installation complete 2009


IGBT Gate Drive Proto 1 Progress

Typical fault current cleared
Circuit response time 1 μs, dominated by IGBT delays


•Slow V_C falltime due to device doping

- •B-dot probe for di/dt detection postrisetime
- Low gated detection threshold on high side drivers
- •High ungated detection threshold on low side drivers to protect from interpulse transients

IGBT Next-Generation Development

Next-generation Press-Pac IGBT devices

- Improved current handling, higher commutation current
 Higher voltage rating (4500 vs. 3300 V), higher current rated recently available (2400, 1800 vs. 1200 A)
- •External anti-parallel diode required
- •Presently developing at SLAC and funded
- •Important for MTBF on RFQ HVCM, higher operating voltages on SCL modulators, ultimately PUP

•~\$40k semiconductors per modulator + switch plate mods and development costs

for the Department of Energy

Introduction
System Overview
Operational Statistics
Historical Perspective
Recent Fire Discussion/Root Cause
IGBT Reliability Improvements
SCL Modulator Enhancements
Future Areas of Development
Conclusion

SCL Modulator Test Results 1

Modulator	No. of klystrons	Vo, kV	lo, A	VDC, V	IC comm, kA	IC peak, kA
DTL-Mod1	3	115.0	88.4	±1117	600	2.96
CCL-Mod4	1	136.7*	75.6	±1164	760	2.54
SCL-Mod5	9	69.0	92.7	±1011	<0	2.34
		72.0	98.6	±1061	0	2.44
		75.0 ¹	104.2	±1112	100	2.52
SCL-Mod9	10	69.0	96.6	±1015	380	2.24
		72.0	103.2	±1069	450	2.36
		75.0 ²	109.5	±1120	470	2.46

*calculated from klystron perveance and current ¹77kV calculated ²75.7 calculated

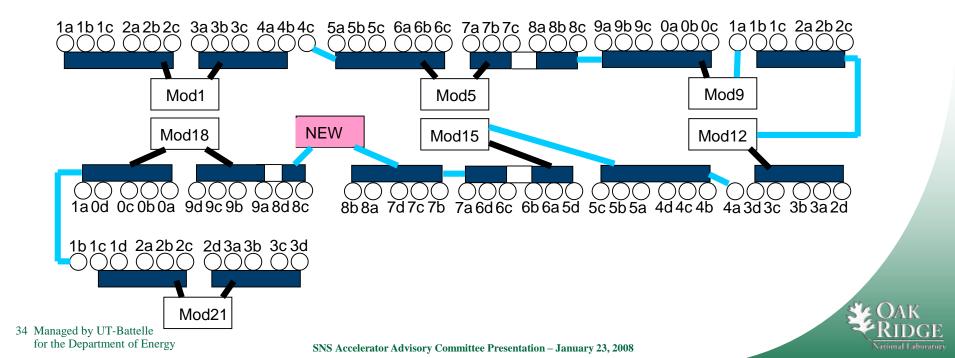
SCL Modulator Test Results 2

Modulator	No. of klystrons	Vo, kV	lo, A	VDC, V	IC comm, kA	IC peak, kA
SCL-Mod15	11	72.0	122.5	±1106		
SCL-Mod18	11	71.0	114.5	±1087	600	2.32
		76.2*	122.0	±1131		
SCL-Mod21	11	71.0	110.7	±1062	600	2.36
		73.0	115.1	±1096	600	2.40
		74.8*	119.6	±1130	650	2.48
SCL-Mod9	12	72.0 ¹	122.8	±1131		
SCL-Mod12	12	72.0 ²	122.1	±1096		

*calculated from klystron perveance and current ¹73.6kV calculated ²72.8kV calculated

Results Discussion

- Running 9-pack is undesirable <75 kV
- Calibration clearly off on many modulators
 - can klystron data be believed?
 - Calibration not yet performed
- 10-pack looks virtually identical to DTL-Mod1 with the existing hardware and should have slightly higher MTBF
- 11-pack can run at 75.0 kV
- 12-pack can run at 72.0 kV, maybe 75.0 kV


Operation Limitations and Penalties

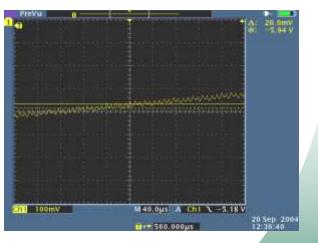
- 11-pack to 75kV
 - ~ ~90% MTBF of DTL-Mod1
 - ~125% MTBF of CCL-Mod4 at present setting
- 12-pack to 75kV
 - Est. 58% MTBF of DTL-Mod1
 - Est. 80% MTBF of CCL-Mod4
 - Danger of frequent spurious trips from protection electronic systems (operating at max. settings)

Reliable 75kV Operation in SCL

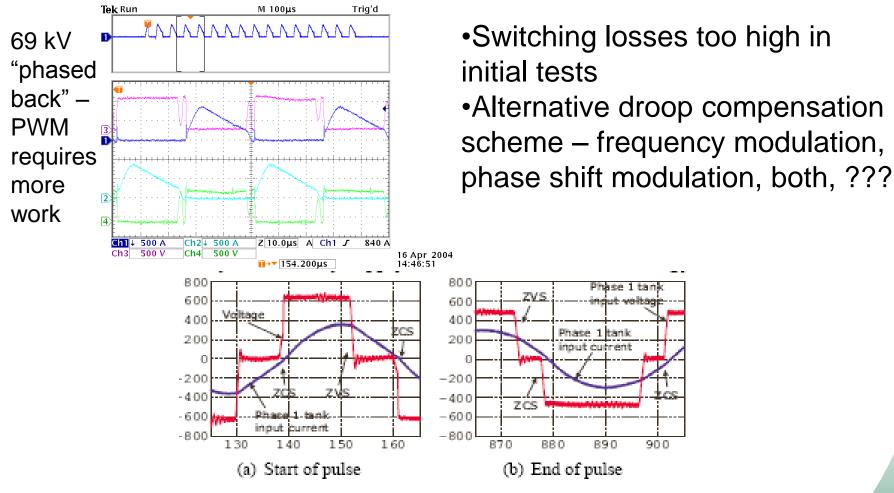
- 10-pack in medium/high beta locations
- 1 11-pack at first medium beta station (SCL-Mod1)
- L_{cable, total} ≤ ~200 feet for E_{fault} < 20J
- Additional HVCM, \$700k w/ SLAC unit OR \$2M for 2 addt'l. HVCM (1 spare+ 1 SLAC unit)

Introduction
System Overview
Operational Statistics
Historical Perspective
Recent Fire Discussion/Root Cause
IGBT Reliability Improvements
SCL Modulator Enhancements
Future Areas of Development
Conclusion

Second Contemporation of the second contempor


20/40 kHz Harmonic Filter for Ripple Reduction

TRACE B: Ch1 Gate PSD dBh/Hz LogMag /d1v dBh/Hz


•20/40 kHz Harmonic Filters on output section to reduce ripple

- •Factor of 2 improvement in ripple (0.33% p-p)
- •Design exists and tested on a CCL modulator

Pulse Droop Correction

University of Nottingham PSM/FM scheme POP

Line P.F. and Harmonic Characterization

- •MetPod by Field Metrics field evaluation unit in SCL-Mod1
- •FO-coupled V and I available adjacent to control rack
- •Study impact on line parameters

Conclusion

•Many of the HVCM subsystems/components have been or will be upgraded to improve reliability

•Funded activities completed mid-FY09

- Fire mitigation has been prompt and will be complete mid-FY09 (outage dominated)
- •Test stand in place early this calendar year to support additional development
- •R&D Efforts underway to support future activities
- •Collaborative efforts utilized to extend available resources
- Modulator issue resolution well-received by management

