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Outline

1) Brief description of ring lattice design.

2) Measurement of fundamental lattice parameters
and test of linearity.

3) Identification and correction of cross-plane
coupling in ring.

4) First ORBIT benchmarks of ring beam
distributions.

5) Ring collimation studies.
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Ring Lattice Design and Working Point

- Lattice is a 4-fold symmetric
achromat.

B (m)

« 6 Quadrupole power supply
families (4 in arc, 2 in straight)

* Nominal working tune is
(6.23, 6.20).

 Natural chromaticity is -7, -9.
* 4 sextupole families are

available for chromaticity
correction.

Dim)

3 Managed by UT-Battelle
for the Department of Energy

Rt T T i

R
SNS Linac Accumulator Ring
o Linux version 8.23/08 08108 11.26.31

w54 B' x I ﬁ ¥ 1 I | i |
I 4 ' 1] i i

¥ ) ) 1 1] "

i | i i

250 4 |

! | | 1 ] !
254 || | l {| fi il I

L | \ . | | ; |
20 I: i I | i [ i [
w5l

[ | i ] | |
FET/ | b i s I [ i |
F- e R
joo (] TR IR 1]
54 1,

50

254

[ N]
4l 25 £ 7=

FLIEN

125

158,

- HRE

O8A0108 11.26.31

R e e T 1T ) i

SNS Linac Accumularor Ring
25 Linux version 8 23/08
Dr i} 1

| [ i
S0 N
J5
N -

2.5 4
28
1.5+
o

1 .'I |I. ! I'. I} L
a5 Iy I !

{ i | |
A !

L

-5 1
2] 25, Si, 75 250,
s im)

FLEIAN 125 150, 200, 225



Measurement of Lattice Tune

* We routinely measure the tune using a single shot of turn-by-turn minipulse

BPM data.
* Recently we have been working at tune (6.27, 6.19).
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Measurement of Lattice Tune

We have measured both natural and corrected lattice chromaticity using:
E= Av p/dp .

Natural chromaticity (Feb 01, 2006): &x=-8,&y =-7

Corrected chromaticity (Feb 12, 2006): Ex =-0.7, &y = -0.25
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Lattice B Function Measurements - Tune
Method

- Measured average 3 for each of the 6 power supply families by changing
guadrupole strengths and measuring tune.

» Good agreement between measured/design was obtained, except for the
straight section vertical quadrupole family.

 This has not yet been corrected. Orbit response matrix analysis is ongoing.
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Lattice B Measurements - Model Independent
Analysis

« Chromaticity-corrected BPM turn-by-turn data was used.

* Model Indepentent Analysis method determines 3 functions up to a constant
scale factor.

 Again, largest discrepancies are in vertical plane in straight sections.
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BPM2 X(mm)

Lattice Linearity Verification

- “Poor Man’s” phase space plots created from BPM turn-by-turn minipulse

data.

» Minipulse amplitude is varied from a minimum to the edge of the aperture

using the injection kickers.

All the way to the edge of the aperture, the lattice appears linear.
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Measurement of Transverse Coupling

e We measure transverse coupling by injecting a single

minipulse with a large vertical offset and small horizontal offset
relative to the closed orbit.
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Correction of Ring Transverse Coupling

Following formalism of D. Sagan & D. Rubin (e.g. PRSTAB
074001 (1999))

X\ [ AnB cosy, +A B, (Ccosy, —Cy,siny,)
(YJ_ —A /B, (Cycosy, +Cpysiny, )+ A /B, cosy,

<
[

No + ¢

C,, = amount of in-phase oscillations coupled in from
the vertical plane. |Cy| =1.

C,, = amount of out-of-phase oscillations coupled in from
the vertical plane. |C,,| = 1.
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Results of Coupling Correction
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Residual coupling is not a problem at this time
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BPM Method for Measuring Real Space
Distributions

 For low intensities, in the absence of injection painting and decoherence, each
minipulse in a distribution follows an identical phase space path.

* We can measure a beam distribution “all at once”, as with wire scanners or harp, or
we can measure each piece separately with the BPMs and aggregate them at the
end.

* In the ring, we only need 1 turn-by-turn snapshot. Inthe RTBT, we vary the storage

time.
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ORBIT Review and Status

ORBIT is a patrticle tracking parallel code for simulating rings and transport lines.
ORBIT has a broad range of simulation models...

 Real injection painting and distributions

« Linear and nonlinear symplectic tracking

« Transverse and longitudinal space charge — several models

« Transverse and longitudinal impedance

«  Collimation and apertures

« Magnet errors

3D Field maps

 e-p simulations and feedback (talk by Danilov)

ORBIT was used heavily in the design of the SNS ring.
Several successful ORBIT benchmark have been conducted for other machines (PSR,

CERN PSB).
We are starting to use ORBIT for SNS. Benchmarks are underway — e-p,

collimation, beam distributions...
ORBIT Future:

Work is underway to translate ORBIT into python language, and invoke an
even more object-oriented approach.
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First ORBIT Benchmarks in the Ring

» Experimental tune, injection were used. Nonlinear tracking (no chicane mults).
 To simulate experiment, we injected one mean-energy particle per turn.
 “Snake” structure seen in experiment and simulation likely due to tunes.
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Ring Collimation Design

QH10, QH12,
scrapers  QV11 QV13
1st collimator 2nd collimator 3rdcollimator

The ring collimators can take up to
2 KW of routine beam power, or two full
|'i'| Position 2 MW pulses.
Scrp B10a
/7 Position The ring collimation system is a two-
5 Scrp B10b stage system with 4 scrapers and 3
N Position large collimators.
\, Scrp B10c
Position The scrapers are used to project the
Scrp B10d beam into high emittance for high
efficiency absorption in downstream
RING SCRAPERS collimator.
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General Collimation Observations

1. The collimators perform as the limiting aperture in the machine.

2. Beam loss due to collimation inefficiency is localized to the collimation
straight section and the beginning of the downstream arc.

3. Areas where beam loss is higher than anticipated are:
a) The quadrupole doublet between the primary and secondary
collimators
b) The first quadrupole and dipole in the downstream arc. This is likely
due to single stage collimation inefficiency

4. ORBIT collimation benchmarks are in reasonable agreement, to within
the conversion accuracy of BLM signals to Joules of beam loss
(Cousineau, PAC2007).
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Collimation

Collimators have been exercised in dedicated experiments (Cousineau, PAC2007).

Example experiment: Single-stage versus two-stage collimation:

Collimation Straight
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Observations:
Single stage collimation (no scraping) leads to worse absorption efficiency
and to larger beam loss in the downstream arc.




Summary

e We have measured the lattice parameters
and found reasonable agreement with the
model.

e We have measured and fixed cross-plane
coupling in the ring.

e \We have begun ORBIT benchmarks of ring
beam distributions at low intensity.

e \WWe have begun to characterize the
collimation system peformance.
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