SNS Control System

Karen White

1/23/08

Managed by UT-Battelle for the Department of Energy

Outline

- Overview
- Challenges
- Plans

Scope of Work

- Instrumentation and Controls, Timing, Machine Protection, Personnel Protection
 - SNS Accelerator
 - Cryogenics
 - RF Test Facility
 - Target
 - Instrument PPS
 - Conventional Facilities
- High level applications provided by Physics Group
- Diagnostics provided by Beam Instrumentation Group

Control System Overview

- Large, EPICS based system
- Highly distributed
- Standards defined early in the project
 - EPICS 3.14.8.2
 - VME
 - IOCs MVME 2100s, 5100s
 - Allen Bradley ControlLogix PLCs
 - Oracle RDB
 - EDM
 - PLC based PPS
 - CISCO network hardware

Architecture

5 Managed by UT-Battelle for the Department of Energy

How Big Is It?

- ~180 VME IOCs
- ~80 Soft IOCs
- ~300 Diagnostics IOCs ???
- ~500,000 Process Variables, including ~125,000 for diagnostics
- Estimated 100,000 channels
- SNS has the largest operational EPICS control system in the world

Control Room

7 Managed by UT-Battelle for the Department of Energy

User Interfaces

8 Managed by UT-Battelle for the Department of Energy

Challenges

- Continue to develop and upgrade control system elements without disrupting machine operations
- Improve availability
- Requires
 - Greater discipline, structure, planning
 - More rigorous configuration control
 - More complete documentation and communication

Availability

- Goal for 2008 cut downtime in half
- For FY07, control system, including MPS and PPS
 - 180.3 hours down
 - 9.1% of all downtime
 - 3rd largest contributor to downtime

Controls/MPS downtime by subgroup

Availability - We should learn from industry

INVESTMENT

The Availability Index (adopted from Blueprints for High Availability)

12 Managed by UT-Battelle for the Department of Energy

Availability

• First steps

- Analyze causes of past downtime and target improvements to address biggest loss and highest frequency problems
- Build on a solid foundation and minimize risk in the event of a failure
 - Harden infrastructure backups, patching, file organization, reproducibility after reboots
 - Improve configuration control and documentation

Archiving

• Currently

- Store ~2000 samples/sec
- Sampling ~80000 channels
- Uses ~170 GB/month

Issues

- Data Maintenance tasks are time consuming or impractical
 - Removal of selected channels or time ranges, organization of disk space.
- No way to add data beyond process variable samples
 - Example: Periodically computed beam statistics
- No data mining tools

Archive Plan

- Extend available storage
 - Controls Group bought 30 TB for new SNS HP EVA storage array of IT Group
- Develop new Archive System
 - Data stored in relational database (Oracle)
 - Sampling Engine implemented in Java
 - Tests show performance of 8000 samples/sec. (4 times what we need)
 - Prototype reads existing configuration files; handles about half of the operational setup without any problems
 - Ongoing work: Support all data types, check stability, add configuration tools
 - Improve GUI uses CSS

Alarms

- Alarms based on automatically generated EPICS IOC logic
- Monitors ~12,000 Process Variables
- Displayed using EDM
- Logged to a relational database
- Selected alarms are audibly annunciated in the CCR
- Problems
 - Original implementer is gone
 - System works, but is difficult to maintain and expand
 - Getting from a summary alarm indication to the root cause often requires drill down through numerous screens
- No quick fix plan to assemble a group of people (Controls & Operations) to map a path forward

- No EPICS provision for configuration database
- We have lots of information stored in Oracle database
- Inconsistently used
- Long term goal
 - All control system configuration information to be stored and updated in RDB
 - All applications use RDB as the definitive source of static information

Projects

• AIP

- Timing
- PPS Segmentation
- Vacuum System

Control System Studio

AIP

• Timing

- Improve maintainability and reliability (any downtime?)
- Reduce number of modules
- Design 3 new timing system boards
- Master replaces 20 existing VME cards (1)
- Receiver FPGA based board (25)
- Fan-out distributes low jitter signals to new receivers (4)

Vacuum

- Improve maintainability and reliability (any downtime?)
- Current system uses custom chassis and interlock modules
- Replace 7 custom chassis with standard PLCs

Control System Studio

- New infrastructure for developing applications
- Facilitates interoperability between applications and a common look and feel.
- Collaboration with DESY to provide better control system tools:
 - Based on Java instead of Unix/C/X11
 - Preference Pages instead of environment variables
 - Consistent Online Help
 - Flexible deployment options
 - Support more than just EPICS
- Work performed at SNS
 - Implemented EPICS PV Tree, Data Browser, and some key CSS core components
 - SNS users can download onto office PC (Windows, Mac, Linux)
 - Basis for Archiver transition

Control System Studio Snapshots

Control System Studio

- Client provides integrated access to
 - Data from current and new archiver
 - Live data

22 Managed by UT-Battelle for the Department of Energy

Summary

23 Managed by UT-Battelle for the Department of Energy