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ARCS overview - Instrument

SPECIFICATIONS
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ARCS overview - applications

sLattice Dynamics
*Entropy and the effects of vibrational modes on stability and phase
transitions of solids
*Excitations in disordered materials; effects of nanoscale features on
vibrational entropy and thermodynamic stability
*Equations-of-state from the measured phonon density-of-states versus
temperature and pressure
*Phonons in correlated-electron materials; coupling of lattice and electronic
degrees of freedom in high-T_, heavy-fermion, and mixed-valence
materials

*Magnetic Dynamics
*High-temperature superconductivity—spin dynamics in superconductors
and precursor compounds and crystal field spectroscopy
sLow-dimensional systems; one-dimensional quantum magnets and low-
dimensional conductors
*Magnetism in actinide materials; heavy-fermion magnetism and
superconductivity

*Chemical Physics
*Deep inelastic neutron scattering studies of hydrogen, helium
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Inelastic neutron scattering geometry
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Spectroscopy instrument types

 Direct geometry

— E; fixed

— ARCS, SEQUOIA, CNCS, HYSPEC
* Inverse geometry

— E; fixed

— BASIS, Vision

e Triple AXxis
e Spin Echo
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Direct geometry inelastic instruments
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Fermi chopper spectrometer —
time/distance diagram

Monitor 2 (18.5m)

All DPEHIHQS af Ferml chnpper

Detectors (16.6 to 17m) 6l | f s //
| / / /
Sample (13.6m) 14 F Af’
Monitor 1 (11.831m) 121 / / / ///// o
Fermi (11.61m) E 1ok i
Fermi chopper 5 gl i
spins at a multiple £
of the source B gl -
frequency (higher
gives better energy 41 .
resolution but
more overlap) 2l 2 i
Example for all N ' ' ' ' ' ' ,
. 0 20000 4000 B0 S 10000 12000 14000 16000

en ergle_S time—of-flight (micro—seconds)
transmitted

OAK RIDGE

National Laboratory

HIGH FLUX | SPALLATION
ISOTOPE NEUTRON

REACTOR | SOURCE



Fermi chopper spectrometer —
time/distance diagram
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Fermi choppers

* Phase controls E;
(15 - 1500 meV)

* Freguency controls
resolution; 0-600 Hz in
iIncrements of 60Hz.

* Magnetic bearing

< Two on a translation table = : —\
— ~4% energy resolution \B2Z% D
(100meV range) . g

— ~4-8% energy resolution
(700meV range)

SPALLATION
NEUTRON
SCURCE

OAK RIDGE

National Laboratory

HIGH FLUX
ISOTOPE
REACTOR




Vertical-axis T, chopper

Based on IPNS chopper concept
Procured with SEQUOIA and

HYSPEC from SKF Magnetic i | e

Bearing

Specifications:

Maximum speed 180Hz, steps of
30Hz

Minimum of 20cm Inconel in beam

Magnetic bearings for low g
maintenance " ’

Remote handling capability
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Energy resolution as

transfer

e Consequence of
time-of-flight
technique for
direct geometry
Instruments:

— Positive energy
transfer —

— slower scattered
neutrons

— longer time-of-
flight =

— better energy
resolution
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Is the H In ZrH, a quantum harmonic
oscillator?
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Predictions for a quantum harmonic
oscillator

Excitation levels are evenly spaced and single mode:
- E,=(n+1/2)ho ho=? n=0,1,2,...

Intensity as a function of momentum transfer Q for elastic scattering
follows a Debye-Waller form (rms displacement):

— 1(Q,E=0) = A exp(-<u>Q? +C

The excitation energy and rms displacement should be consistent

Intensity as a function of Q for the first excitation should follow:
— I(Q, E=he) = B Q% exp( - <u?>Q?) + D

Higher excitations should have equivalent forms with a term
- 1(Q,nhe) ~ Q=" exp( - <u*>Q?)

How does our experiment match up? What could be causes of
discrepancies?
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Possible additional measurements

e Change incident energy
— How does resolution change?
— What other information about the system can be seen?

e Additional measurements to see instrumental
effects

— Measure empty can for background subtraction
— Measure without collimator

o Different system: Uranium Nitride

— QHO scattering seen while trying other experiment on the
magnetism in UN

— Reference: A.A. Aczel, G.E. Granroth, G.J. MacDougall,
W.J.L. Buyers, D.L. Abernathy, G.D. Samolyuk, G.M. Stocks
and S.E. Nagler, “Quantum oscillations of nitrogen atoms in
uranium nitride,” Nature Communications 3, 1124 (2012).

Figure 1| Rocksalt crystal structure of uranium nitride. Each M atom
(small red spheres) is centred in a regular octahedron of U atoms (large
blue spheres).
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