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Lattice dynamics for beginners

Lattice dynamics describes vibrations of atoms in condensed matter:
  

• crystalline solids 
• glasses, and 
• liquids 

However, some of the convenience gained by symmetry or periodic lattice is lost for glasses and 
liquids. Also, effect of surfaces and defects are glowing short-comings of the classical model. 
Lattice dynamics is a reflection of forces acting upon atoms and leads to

• sound velocity 
• vibrational entropy 
• specific heat 
• force constant 
• compression tensor 
• Young’s modulus 
• stiffness and resilience 
• Gruneisen constant 
• viscosity 

Many experimental techniques exist to study lattice dynamics

• sound velocity, deformation, thermal expansion,heat capacity…. 
• spectroscopic methods using light, x-rays and neutrons, and electrons 
• point contact spectroscopy

Imagine that you can measure 
all that for a micron sized sample,  
at 3 Mbar at 4000 K, in a way that  
is element selective, or even better 
isotope selective.

Sectors 3, 16, 30



Two main approximations should be noticed: 

• Born-Oppenheimer (adiabiatic) approximation
  
 - Motion of atoms are independent and decoupled from the electrons.    
 - All electrons follow the nuclei. This can be justified by considering the 
time scales involved:10-15 s (femto) for electrons, 10-12 s (pico) for nuclei 

• Harmonic approximation 

 -  At equilibrium, attractive and repulsive forces are balanced.  
 -  When atoms move away from the equilibrium positions, they are 
forced to come back by restoring forces.  
 -  Magnitude of atomic displacements are small compared to 
interatomic distance. 
 -  All atoms in equivalent positions in every unit cell move together.

Atomic motions are described as harmonic traveling waves, characterized by

• wavelength, λ 
• angular frequency, ω 
• momentum vector along the direction of propagation, 

r
k = λ

2π
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Figure 1. Traditional potential energy curve for two atoms, showing a minimum at a separation of r0 that might
correspond to the bond length, the steep rise for shorter distances that reflects the repulsion due to overlap of
electron density of the two atoms, and the more gentle rise towards zero for larger separations reflecting the
attractive interaction. This plot is however somewhat of a simplification of the situation within a crystal, because
typically the atoms within a crystal are held in place by a large number of interactions, including the long-range
Coulomb interaction, and the position of the minimum of any pair of atoms may not reflect actual equilibrium
contact distances.

More recently we have seen a number of key developments in the study of lattice dynamics.
In terms of experiments, we are seeing a new generation of instruments at neutron scattering
facilities, particularly with the ability to collect data over wide ranges of scattering vector and
energy simultaneously. The new instrumentation is matched by software for simulating the outputs of
experiments, coupled with new capabilities to calculate !(k) from quantum mechanical simulations.
These capabilities coincide with the emergence of investigations concerned with new phenomena such
as negative thermal expansion, which directly need calculations and measurements of lattice dynamics
for a clear understanding (see Section 6.5 for example). All these developments have led to renewed
interest in lattice dynamics.

1.3 The harmonic approximation

The key approximation in the theory of lattice dynamics is the harmonic approximation. This is
illustrated by considering the potential energy between two atoms, as shown in Figure 1. We can write
the energy as a Taylor expansion around the minimum point r0:

E(r) = E0 + 1
2

!2E

!r2

∣∣∣∣
r0

(r − r0)2 + 1
3!

!3E

!r3
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r0

(r − r0)3 + 1
4!

!4E

!r4
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r0

(r − r0)4 + · · · (1.1)

where the derivatives are performed at r = r0.5 The harmonic approximation consists of neglecting all
terms of power higher than 2.

One might think that the harmonic approximation is both trivial and drastic, but it is actually very
powerful. On one hand, it is effectively the only model for lattice dynamics that has an exact solution.
On the other hand, it gives us many features that survive addition of higher-order terms. These include
the link between vibrational frequencies, wave vector and interatomic forces, and applications in areas

5 In this example the linear term is zero because the definition of equilibrium is that !E/!r = at the equilibrium distance r0.

ignoring these terms is the harmonic approximation
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There should be no thermal expansion 
in the harmonic model. 

The fact that there is thermal expansion 
is an indication that the potential under 
which the atoms move is not harmonic.  

However, harmonic model has so many 
convenient features that we adopt it to 
explain many features of atomic 
vibrations. 
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Figure 2. Simple diatomic chain model, with atoms of different mass connected by harmonic forces that are of
equal strength between all nearest-neighbour atom pairs. The unit cell length is denoted by a, atom a vector of the
form ui,n denote the displacement of atom of label i in unit cell of label n [2].

such as the thermodynamic properties of materials. Moreover, the harmonic model is easily adapted to
incorporate quantum mechanics.

Thus there is considerable merit in starting with the harmonic approximation, and then attempting
to modify the picture to account for higher-order anharmonic terms as appropriate. Applications that
are not explained by the harmonic model include properties such as thermal expansion and thermal
conductivity, and behaviour such as phase transitions. Experience has shown that for many of these
applications this approach works well. For example, in the study of thermal expansion it is possible to
retain the harmonic approximation but allow force constants to change with an expansion of the lattice.

2. THEORY OF HARMONIC LATTICE DYNAMICS

2.1 Starting model: The diatomic chain

Most textbooks begin with a model that consists of one atom in the unit cell, which is typically then
explored in a single dimension and subsequently generalised to three dimensions visually. Here we
will skip past this approach and introduce instead a one-dimensional model of a crystal containing two
atoms in the unit cell, Figure 2. By starting with this model we quickly position ourselves to generalise
the formalism to more complex three-dimensional materials.

The total energy of this model is written in terms of the displacements of atoms 1 and 2, u1,n and
u2,n respectively, as defined in Figure 2:

E = 1
2

J
∑

n

(u1,n − u2,n)2 + 1
2

J
∑

n

(u2,n − u1,n+1)2

= J
∑

n

(u2
1,n + u2

2,n) − J
∑

n

(u1,nu2,n + u2,nu1,n+1) (2.1)

The first representation reflects the image of the model in terms of bonds as simple springs, with each
term corresponding to the energy associate with stretching or compressing one of the springs. The
second representation is a Taylor expansion of the total energy, which in general terms can be written as

E = 1
2

∑

i,j

ui

!E

!ui!uj

uj (2.2)

By comparing the two preceding equations, it can be seen that the parameter J is equal to the derivative
of the total energy:

J = !2E

!u1,n!u2,n
. (2.3)
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. (2.3)Force constant (spring constant)

JDN 18 127

2.2 Travelling waves

We next consider the equations of the waves travelling through crystals. In the general case, a wave of
wave vector k and angular frequency ! travelling through a crystal will displace an atom labelled j at
nominal position rj by

uj (rj , t) = ũj exp(i(k · rj − !t)) (2.4)

where ũj represents both the amplitude of the wave and its specific effect on atom j , and may be
a complex number (this is discussed in more detail in following sections). We remark here that the
definition of the position rj is treated in two ways in the scientific literature. It can be taken to represent
the actual position of the atom, or else it can be taken as the origin of the unit cell containing the atom. It
actually doesn’t matter, because the difference is merely a phase factor, which can be incorporated into
the complex amplitude ũj .

If we consider a single wave travelling through our one-dimensional mode with a particular value of
k and !, it will displace the two atoms by

u1,n(t) = ũ1 exp (i(kna − !t)) (2.5)

u2,n(t) = ũ2 exp (i(kna − !t)) (2.6)

where ũ1 and ũ2 are the relative amplitudes of motion of the two atoms. In this case we have treated the
vector rj for both atoms as the origin of the unit cell, r1 = r2 = na, rather than as the actual positions
of the atoms, na and (n + 1/2)a respectively. Thus the amplitude ũ2 will contain the phase factor
exp(ika/2). At this point we do not know the relationship between ũ1 and ũ2, nor will be able to think
about their absolute values until we introduce thermodynamics into the picture.

2.3 Equations of motion

Our starting point is to consider the energy of the two atoms in the unit cell labelled n through its
interaction with their two nearest neighbours:

E1,n = 1
2

J (u1,n − u2,n)2 + 1
2

J (u1,n − u2,n−1)2 (2.7)

E2,n = 1
2

J (u2,n − u1,n)2 + 1
2

J (u2,n − u1,n+1)2 (2.8)

The key equation we will be dealing with is simply Newton’s equation, force = mass × acceleration.
Thus we start by computing the force acting on each atom, as given by the derivative of the energy with
respect to displacement:

f1,n = −!E1,n

!u1,n
= −J (u1,n − u2,n) − J (u1,n − u2,n−1)

= −J (2u1,n − u2,n − u2,n−1) (2.9)

f2,n = −!E2,n

!u2,n
= −J (u2,n − u1,n) − J (u2,n − u1,n+1)

= −J (2u2,n − u1,n − u1,n+1) (2.10)

We next need to consider the acceleration of each atom, which is given as the second time derivative of
the atomic displacement:

ü1,n(t) = −!2ũ1 exp i (kna − !t) = −!2u1,n(t) (2.11)

ü2,n(t) = −!2ũ2 exp i (kna − !t) = −!2u2,n(t) (2.12)

Diatomic infinite 1-D chain

Time dependent displacement of two atoms  
in terms of relative displacement of each atom
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Energy
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Force as derivative of energy
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ü2,n(t) = −!2ũ2 exp i (kna − !t) = −!2u2,n(t) (2.12)
Acceleration
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Newton’s equation now links equations (2.9) and (2.10) to equations (2.11) and (2.12) respectively to
give:

m1ü1,n(t) = −m1!2u1,n(t) = −J (2u1,n(t) − u2,n(t) − u2,n−1(t)) (2.13)

m2ü2,n(t) = −m2!2u2,n(t) = −J (2u2,n(t) − u1,n(t) − u1,n+1(t)) (2.14)

Before we proceed, we note that we can write

uj ,n±1(t) = uj ,n exp (±ikna) (2.15)

Thus we can rewrite equations (2.13) and (2.14), removing the minus signs from both sides, as

m1!2u1,n(t) = J (2u1,n(t) − u2,n(t) − u2,n(t) exp(−ika)) (2.16)

m2!2u2,n(t) = J (2u2,n(t) − u1,n(t) − u1,n(t) exp(+ika)) (2.17)

Since both u1,n(t) and u2,n(t) have the same complex exponential function, we can divide this out from
both sides of equations (2.16) and (2.17) to yield

m1!2ũ1 = J (2ũ1 − ũ2 − ũ2 exp(−ika)) (2.18)

m2!2ũ2 = J (2ũ2 − ũ1 − ũ1 exp(+ika)) (2.19)

It will prove useful going forward to normalise by the atomic masses. We write

e1 = m
1/2
1 ũ1; e2 = m

1/2
2 ũ2 (2.20)

Equations (2.18) and (2.19) are thus re-written as

!2e1 = J
(
2e1/m1 − e2 (1 + exp(−ika)) /

√
m1m2

)
(2.21)

!2e2 = J
(
2e2/m2 − e1 (1 + exp(+ika)) /

√
m1m2

)
(2.22)

By inspection, it can be seen that equations (2.21) and (2.22) can be combined into a matrix equation:

!2
(

e1

e2

)
= D(k) ·

(
e1

e2

)
(2.23)

where

D(k) =
(

2J/m1 −J (1 + exp(−ika)) /
√

m1m2

−J (1 + exp(+ika)) /
√

m1m2 2J/m2

)
. (2.24)

2.4 Solutions

Before we rush ahead to discuss the solutions to these equations in detail, there are several points to
make here. First, this is a simple eigenvalue/eigenvector equation, with the !2 values being obtained
as the eigenvalues of the matrix D(k). This will yield two solutions for !2, which means that our
dynamical equations have given two normal modes. Second, the matrix D(k) has the property that it
is equal to the transpose of its complex conjugate. Matrices with this property are called Hermitian, and
an important property of Hermitian matrices is that their eigenvalues are real. This means that the values
of !2 obtained as the solutions of the model are real quantities, although they can be negative as well as
positive.6

6 A negative value of !2 means that the value of ! will be imaginary; the physical interpretation is that the potential energy
surface is curved downwards with respect to the displacements of atoms in the normal mode rather than the expected upwards
curvature, which means that that the crystal is actually unstable with respect to the set of displacements. This interpretation forms
the basis of the soft-mode model for displacive phase transitions.
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Acoustic mode

Optic mode

Figure 3. Representation of the difference between acoustic and optic modes in the limit of wave vector k → 0 for
the model diatomic chain. The atomic motions of the two types of atoms are in-phase for the acoustic mode, and
out-of-phase for the optic mode [2].
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Figure 4. Dispersion curve of the diatomic chain model shown in Figure 2 [2].

These solutions both correspond to one atom remaining at rest in each unit cell, and with k = !/a

the other atom will move in opposite directions in neighbouring unit cells. Note that in this case, the
differentiation between acoustic and optic modes has now vanished. The distinction between in-phase
and out-of-phase motions only arises in the limit k → 0.

The complete set of solutions for "(k) for all values of k is shown in Figure 4. These are displayed
as two continuous curves, one for the acoustic mode (which becomes the sound wave with " ∝ k as
k → 0) and the other for the optic mode.

We complete this description by noting three features of the dispersion curves shown in figure 4.
First, both solutions at k = !/a have zero group velocity, that is !"/!k = 0. At this wave vector, both
waves are standing waves, they correspond to the motions of atoms in neighbouring unit cells being
exactly opposite to each other. The second point is that the solutions for any k are invariant with respect
to changing the sign of k. The third point is that the solutions are also invariant when adding any
reciprocal lattice vector, which in our simple model would be given by ±2!n/a, where n is any integer.
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Newton’s equation now links equations (2.9) and (2.10) to equations (2.11) and (2.12) respectively to
give:

m1ü1,n(t) = −m1!2u1,n(t) = −J (2u1,n(t) − u2,n(t) − u2,n−1(t)) (2.13)

m2ü2,n(t) = −m2!2u2,n(t) = −J (2u2,n(t) − u1,n(t) − u1,n+1(t)) (2.14)

Before we proceed, we note that we can write

uj ,n±1(t) = uj ,n exp (±ikna) (2.15)

Thus we can rewrite equations (2.13) and (2.14), removing the minus signs from both sides, as

m1!2u1,n(t) = J (2u1,n(t) − u2,n(t) − u2,n(t) exp(−ika)) (2.16)

m2!2u2,n(t) = J (2u2,n(t) − u1,n(t) − u1,n(t) exp(+ika)) (2.17)

Since both u1,n(t) and u2,n(t) have the same complex exponential function, we can divide this out from
both sides of equations (2.16) and (2.17) to yield

m1!2ũ1 = J (2ũ1 − ũ2 − ũ2 exp(−ika)) (2.18)

m2!2ũ2 = J (2ũ2 − ũ1 − ũ1 exp(+ika)) (2.19)

It will prove useful going forward to normalise by the atomic masses. We write

e1 = m
1/2
1 ũ1; e2 = m

1/2
2 ũ2 (2.20)

Equations (2.18) and (2.19) are thus re-written as

!2e1 = J
(
2e1/m1 − e2 (1 + exp(−ika)) /

√
m1m2

)
(2.21)

!2e2 = J
(
2e2/m2 − e1 (1 + exp(+ika)) /

√
m1m2

)
(2.22)

By inspection, it can be seen that equations (2.21) and (2.22) can be combined into a matrix equation:

!2
(

e1

e2

)
= D(k) ·

(
e1

e2

)
(2.23)

where

D(k) =
(

2J/m1 −J (1 + exp(−ika)) /
√

m1m2

−J (1 + exp(+ika)) /
√

m1m2 2J/m2

)
. (2.24)

2.4 Solutions

Before we rush ahead to discuss the solutions to these equations in detail, there are several points to
make here. First, this is a simple eigenvalue/eigenvector equation, with the !2 values being obtained
as the eigenvalues of the matrix D(k). This will yield two solutions for !2, which means that our
dynamical equations have given two normal modes. Second, the matrix D(k) has the property that it
is equal to the transpose of its complex conjugate. Matrices with this property are called Hermitian, and
an important property of Hermitian matrices is that their eigenvalues are real. This means that the values
of !2 obtained as the solutions of the model are real quantities, although they can be negative as well as
positive.6

6 A negative value of !2 means that the value of ! will be imaginary; the physical interpretation is that the potential energy
surface is curved downwards with respect to the displacements of atoms in the normal mode rather than the expected upwards
curvature, which means that that the crystal is actually unstable with respect to the set of displacements. This interpretation forms
the basis of the soft-mode model for displacive phase transitions.

Mass normalized displacements (real)
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Newton’s equation now links equations (2.9) and (2.10) to equations (2.11) and (2.12) respectively to
give:

m1ü1,n(t) = −m1!2u1,n(t) = −J (2u1,n(t) − u2,n(t) − u2,n−1(t)) (2.13)

m2ü2,n(t) = −m2!2u2,n(t) = −J (2u2,n(t) − u1,n(t) − u1,n+1(t)) (2.14)

Before we proceed, we note that we can write

uj ,n±1(t) = uj ,n exp (±ikna) (2.15)

Thus we can rewrite equations (2.13) and (2.14), removing the minus signs from both sides, as

m1!2u1,n(t) = J (2u1,n(t) − u2,n(t) − u2,n(t) exp(−ika)) (2.16)

m2!2u2,n(t) = J (2u2,n(t) − u1,n(t) − u1,n(t) exp(+ika)) (2.17)

Since both u1,n(t) and u2,n(t) have the same complex exponential function, we can divide this out from
both sides of equations (2.16) and (2.17) to yield

m1!2ũ1 = J (2ũ1 − ũ2 − ũ2 exp(−ika)) (2.18)

m2!2ũ2 = J (2ũ2 − ũ1 − ũ1 exp(+ika)) (2.19)

It will prove useful going forward to normalise by the atomic masses. We write

e1 = m
1/2
1 ũ1; e2 = m

1/2
2 ũ2 (2.20)

Equations (2.18) and (2.19) are thus re-written as

!2e1 = J
(
2e1/m1 − e2 (1 + exp(−ika)) /

√
m1m2

)
(2.21)

!2e2 = J
(
2e2/m2 − e1 (1 + exp(+ika)) /

√
m1m2

)
(2.22)

By inspection, it can be seen that equations (2.21) and (2.22) can be combined into a matrix equation:

!2
(

e1

e2

)
= D(k) ·

(
e1

e2

)
(2.23)

where

D(k) =
(

2J/m1 −J (1 + exp(−ika)) /
√

m1m2

−J (1 + exp(+ika)) /
√

m1m2 2J/m2

)
. (2.24)

2.4 Solutions

Before we rush ahead to discuss the solutions to these equations in detail, there are several points to
make here. First, this is a simple eigenvalue/eigenvector equation, with the !2 values being obtained
as the eigenvalues of the matrix D(k). This will yield two solutions for !2, which means that our
dynamical equations have given two normal modes. Second, the matrix D(k) has the property that it
is equal to the transpose of its complex conjugate. Matrices with this property are called Hermitian, and
an important property of Hermitian matrices is that their eigenvalues are real. This means that the values
of !2 obtained as the solutions of the model are real quantities, although they can be negative as well as
positive.6

6 A negative value of !2 means that the value of ! will be imaginary; the physical interpretation is that the potential energy
surface is curved downwards with respect to the displacements of atoms in the normal mode rather than the expected upwards
curvature, which means that that the crystal is actually unstable with respect to the set of displacements. This interpretation forms
the basis of the soft-mode model for displacive phase transitions.

Matrix form of Newton’s eqn of motion 
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Newton’s equation now links equations (2.9) and (2.10) to equations (2.11) and (2.12) respectively to
give:

m1ü1,n(t) = −m1!2u1,n(t) = −J (2u1,n(t) − u2,n(t) − u2,n−1(t)) (2.13)

m2ü2,n(t) = −m2!2u2,n(t) = −J (2u2,n(t) − u1,n(t) − u1,n+1(t)) (2.14)

Before we proceed, we note that we can write

uj ,n±1(t) = uj ,n exp (±ikna) (2.15)

Thus we can rewrite equations (2.13) and (2.14), removing the minus signs from both sides, as

m1!2u1,n(t) = J (2u1,n(t) − u2,n(t) − u2,n(t) exp(−ika)) (2.16)

m2!2u2,n(t) = J (2u2,n(t) − u1,n(t) − u1,n(t) exp(+ika)) (2.17)

Since both u1,n(t) and u2,n(t) have the same complex exponential function, we can divide this out from
both sides of equations (2.16) and (2.17) to yield

m1!2ũ1 = J (2ũ1 − ũ2 − ũ2 exp(−ika)) (2.18)

m2!2ũ2 = J (2ũ2 − ũ1 − ũ1 exp(+ika)) (2.19)

It will prove useful going forward to normalise by the atomic masses. We write

e1 = m
1/2
1 ũ1; e2 = m

1/2
2 ũ2 (2.20)

Equations (2.18) and (2.19) are thus re-written as

!2e1 = J
(
2e1/m1 − e2 (1 + exp(−ika)) /

√
m1m2

)
(2.21)

!2e2 = J
(
2e2/m2 − e1 (1 + exp(+ika)) /

√
m1m2

)
(2.22)

By inspection, it can be seen that equations (2.21) and (2.22) can be combined into a matrix equation:

!2
(

e1

e2

)
= D(k) ·

(
e1

e2

)
(2.23)

where

D(k) =
(

2J/m1 −J (1 + exp(−ika)) /
√

m1m2

−J (1 + exp(+ika)) /
√

m1m2 2J/m2

)
. (2.24)

2.4 Solutions

Before we rush ahead to discuss the solutions to these equations in detail, there are several points to
make here. First, this is a simple eigenvalue/eigenvector equation, with the !2 values being obtained
as the eigenvalues of the matrix D(k). This will yield two solutions for !2, which means that our
dynamical equations have given two normal modes. Second, the matrix D(k) has the property that it
is equal to the transpose of its complex conjugate. Matrices with this property are called Hermitian, and
an important property of Hermitian matrices is that their eigenvalues are real. This means that the values
of !2 obtained as the solutions of the model are real quantities, although they can be negative as well as
positive.6

6 A negative value of !2 means that the value of ! will be imaginary; the physical interpretation is that the potential energy
surface is curved downwards with respect to the displacements of atoms in the normal mode rather than the expected upwards
curvature, which means that that the crystal is actually unstable with respect to the set of displacements. This interpretation forms
the basis of the soft-mode model for displacive phase transitions.

Eigen solutions 

JDN 18 129

Before we plot !2(k) as solutions of D(k) for all values of k, let us consider the case of very small
values of k. We write D(k → 0) as

D(k → 0) =
(

2J/m1 −J (2 − ika) /
√

m1m2

−J (2 + ika) /
√

m1m2 2J/m2

)
(2.25)

It’s eigenvalues are obtained as the solution of the equation
∣∣∣∣D(k) −

(
!2

1(k) 0
0 !2

2(k)

)∣∣∣∣ = 0 (2.26)

This procedure is frequently called the diagonalisation of the matrix D(k), because it results in the
diagonal matrix whose elements are !2

1 and !2
2. The solutions are obtained as the roots of the equation

!4 − 2J (m1 + m2)
m1m2

!2 − J 2k2a2

m1m2
= 0 (2.27)

yielding

!2
1(k) = J 2a2

2(m1 + m2)
k2; !2

2(k) = 2J

(
1

m1
+ 1

m2

)
− O(k2) (2.28)

The solution !2
1(k) has the form !1 ∝ k, which corresponds to a sound wave with velocity v =

!/k = Ja/
√

2(m1 + m2). The second solution has a non-zero value at k ∼ 0, and also has zero
gradient, (!!2/!k)k=0 = 0. This gradient corresponds to the group velocity – the velocity of energy
propagation – and its zero value is characteristic of a standing wave. Given that at k = 0 every unit cell
behaves the same, we expect all solution for k = 0 other than the sound waves to be standing waves.

We now consider the eigenvectors corresponding to these two solutions. The results are

Solution 1: m
−1/2
1 e1 = m

−1/2
2 e2 (2.29)

Solution 2: m
1/2
1 e1 = −m

1/2
2 e2 (2.30)

The eigenvectors of the first solution are consistent with the suggestion above that this wave is a sound
wave, namely where neighbouring atoms move in phase with each other with the same amplitude. The
eigenvectors of the second solution correspond to neighbouring atoms of different types moving out of
phase, with the mass normalisations implying that the centre of mass of the unit cell is not displaced
in the wave. These two waves are illustrated in Figure 3. Conventionally the sound wave is called an
acoustic mode – for obvious reasons – and the second solution is called an optic mode. The origin of this
name comes from the fact that if the two atoms are of opposite charge, the atomic motions represent the
displacements that would be caused by a sinusoidally-varying electric field, namely an electromagnetic
wave. For many crystals, the frequency of this wave is just short of the frequencies of visible light
(typically in the infrared region).

Now we consider a second special case, namely k = "/a, corresponding to the wavelength of the
wave equal to twice the unit cell repeat distance. We can now write

D(k = "/a) =
(

2J/m1 0
0 2J/m2

)
(2.31)

The two eigenvalues obtained from diagonalisation of D(k = "/a) are

!2
1 = 2J/m1; !2

2 = 2J/m2 (2.32)

with eigenvectors for the two solutions

Solution 1 : e1 = 1; e2 = 0 (2.33)

Solution 2 : e1 = 0; e2 = 1 (2.34)
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Acoustic mode

Optic mode

Figure 3. Representation of the difference between acoustic and optic modes in the limit of wave vector k → 0 for
the model diatomic chain. The atomic motions of the two types of atoms are in-phase for the acoustic mode, and
out-of-phase for the optic mode [2].
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Figure 4. Dispersion curve of the diatomic chain model shown in Figure 2 [2].

These solutions both correspond to one atom remaining at rest in each unit cell, and with k = !/a

the other atom will move in opposite directions in neighbouring unit cells. Note that in this case, the
differentiation between acoustic and optic modes has now vanished. The distinction between in-phase
and out-of-phase motions only arises in the limit k → 0.

The complete set of solutions for "(k) for all values of k is shown in Figure 4. These are displayed
as two continuous curves, one for the acoustic mode (which becomes the sound wave with " ∝ k as
k → 0) and the other for the optic mode.

We complete this description by noting three features of the dispersion curves shown in figure 4.
First, both solutions at k = !/a have zero group velocity, that is !"/!k = 0. At this wave vector, both
waves are standing waves, they correspond to the motions of atoms in neighbouring unit cells being
exactly opposite to each other. The second point is that the solutions for any k are invariant with respect
to changing the sign of k. The third point is that the solutions are also invariant when adding any
reciprocal lattice vector, which in our simple model would be given by ±2!n/a, where n is any integer.
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Figure 4. Dispersion curve of the diatomic chain model shown in Figure 2 [2].

These solutions both correspond to one atom remaining at rest in each unit cell, and with k = !/a

the other atom will move in opposite directions in neighbouring unit cells. Note that in this case, the
differentiation between acoustic and optic modes has now vanished. The distinction between in-phase
and out-of-phase motions only arises in the limit k → 0.

The complete set of solutions for "(k) for all values of k is shown in Figure 4. These are displayed
as two continuous curves, one for the acoustic mode (which becomes the sound wave with " ∝ k as
k → 0) and the other for the optic mode.

We complete this description by noting three features of the dispersion curves shown in figure 4.
First, both solutions at k = !/a have zero group velocity, that is !"/!k = 0. At this wave vector, both
waves are standing waves, they correspond to the motions of atoms in neighbouring unit cells being
exactly opposite to each other. The second point is that the solutions for any k are invariant with respect
to changing the sign of k. The third point is that the solutions are also invariant when adding any
reciprocal lattice vector, which in our simple model would be given by ±2!n/a, where n is any integer.
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behaves the same, we expect all solution for k = 0 other than the sound waves to be standing waves.
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The eigenvectors of the first solution are consistent with the suggestion above that this wave is a sound
wave, namely where neighbouring atoms move in phase with each other with the same amplitude. The
eigenvectors of the second solution correspond to neighbouring atoms of different types moving out of
phase, with the mass normalisations implying that the centre of mass of the unit cell is not displaced
in the wave. These two waves are illustrated in Figure 3. Conventionally the sound wave is called an
acoustic mode – for obvious reasons – and the second solution is called an optic mode. The origin of this
name comes from the fact that if the two atoms are of opposite charge, the atomic motions represent the
displacements that would be caused by a sinusoidally-varying electric field, namely an electromagnetic
wave. For many crystals, the frequency of this wave is just short of the frequencies of visible light
(typically in the infrared region).

Now we consider a second special case, namely k = "/a, corresponding to the wavelength of the
wave equal to twice the unit cell repeat distance. We can now write

D(k = "/a) =
(

2J/m1 0
0 2J/m2

)
(2.31)

The two eigenvalues obtained from diagonalisation of D(k = "/a) are

!2
1 = 2J/m1; !2

2 = 2J/m2 (2.32)

with eigenvectors for the two solutions

Solution 1 : e1 = 1; e2 = 0 (2.33)

Solution 2 : e1 = 0; e2 = 1 (2.34)
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√
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−J (2 + ika) /
√

m1m2 2J/m2

)
(2.25)
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(
!2
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0 !2

2(k)
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Spectroscopy with meV energy resolution 7529

Table 1. Crystal contributions for different silicon reflections. The reflections are higher orders of
the (1, 1, 1) and the (3, 1, 0) reflections, currently used at the existing spectrometers.

Reflection E (keV) τext (µm) τabs (µm) δEcrystal (meV) Reflectivity (%)

(7, 7, 7) 13.839 40 300 5.13 81
(12, 4, 0) 14.438 30 380 6.21 87

(8, 8, 8) 15.816 50 500 4.42 85
(9, 9, 9) 17.793 100 700 1.99 76

(18, 6, 0) 21.657 200 1220 1.23 78
(11, 11, 11) 21.747 280 1240 0.85 70
(12, 12, 12) 23.724 270 1590 0.79 75
(13, 13, 13) 25.701 600 1990 0.37 61
(24, 8, 0) 28.876 840 2730 0.255 61
(15, 15, 15) 29.655 1400 2930 0.153 46

is a multiple-beam case, typically with twenty or more beams involved. However, for Bragg
angles a few millidegrees away from backscattering, multiple-beam effects can be in principle
avoided by choosing a certain crystal orientation. Another way to get around this problem is
to use crystals other than silicon, which have a non-cubic crystal symmetry. Then, however,
it becomes difficult to obtain crystals of a high enough quality. The best resolution obtained
so far from a non-silicon crystal is 2.5 meV from a sapphire crystal at 21.5 keV in exact
backscattering geometry [14].

In the following we assume that multiple-beam situations can be avoided in one way or
the other and that therefore there is no significant dependence of the crystal contribution on
small variations of the Bragg angle.

3.2. Geometry contribution for a flat crystal

A distribution of reflected wavelengths arises from the fact that the incident angle for a divergent
beam varies over the crystal surface. From a differentiation of the Bragg law one can easily
derive

δEgeom

E
= cotan(θB) δθB = tan(ϵ) δϵ ≈ ϵ δϵ (10)

with ϵ = π/2 − θB . Close to backscattering, tan(ϵ) can be replaced by ϵ. In contrast
to the crystal contribution, the geometry contribution depends strongly on the Bragg angle.
As a consequence, a geometry close to perfect backscattering geometry is required for a
meV spectrometer at the monochromator and analyser crystals. However, even in perfect
backscattering geometry, the energy width in equation (10) does not go to zero, as can be seen
in figure 2(a), if the angular divergence of the beam δϵbeam is finite. On the surface of the crystal,
the Bragg angle is constant on circles (dotted lines in figure 2) around the backscattering point,
where ϵ = 0. In this case, although the crystal is aligned to perfect backscattering, the average
Bragg angle is about 1

4 δϵbeam. The width of the Bragg angle distribution in equation (10) is
about δϵ = 1

2 δϵbeam. Therefore,

δEgeom

E
≈ 1

8 (δϵbeam)2. (11)

In a real experiment this geometry can be achieved at the analyser with a semitransparent
detector with a sufficient time resolution (e.g., as in [14]). However, because of the limited
efficiency of this set-up, a geometry slightly off exact backscattering is preferred for a
spectrometer (see figure 2(b)). For an estimation of the width of the Bragg angle distribution,
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Table 2. Settings for the analyser for different energy resolutions. The total energy resolution is
here twice the value of the geometrical contribution of the analyser.

δEtotal (meV) δEgeom (meV) Reflection E (keV) θBragg (deg) L (m)

12.42 6.21 (12, 4, 0) 14.438 89.95 2.22
10.26 5.13 (7, 7, 7) 13.839 89.96 2.39
8.84 4.42 (8, 8, 8) 15.816 89.97 2.76
3.98 1.99 (9, 9, 9) 17.793 89.976 4.35
2.46 1.23 (18, 6, 0) 21.657 89.983 6.11
1.70 0.85 (11, 11, 11) 21.747 89.986 7.36
1.58 0.79 (12, 12, 12) 23.724 89.989 7.98
0.74 0.37 (13, 13, 13) 25.701 89.991 12.1
0.51 0.255 (24, 8, 0) 28.876 89.993 15.5
0.30 0.153 (15, 15, 15) 29.655 89.995 20.2

The drawback of the horizontal scattering geometry is that, for higher scattering angles, the
intensity is decreasing, due to the horizontal polarization of the synchrotron radiation and the
polarization-dependent term in equation (3).

For very good energy resolutions of less than 1 meV, the length of the analyser arm exceeds
10 metres, so it becomes difficult to build and to integrate in a beamline design. Also, the
Bragg angles become very close to backscattering, which will lead to more problems with the
multiple-beam excitations. However, the most important limitation that currently restricts the
energy resolution to above 1 meV is the available flux at a third-generation synchrotron source.
A possibility to improve the flux situation is the installation of multiple analysers, which was
first done at the spectrometers at the ESRF. This requires even more instrumentation effort
on the analyser side, but multiplies the amount of data that can be taken per time unit. An
estimation of the flux will be given in the next section.

In figure 4(a) the design is sketched for an instrument with a backscattering mono-
chromator, which is used at two instruments at the ESRF (ID16 and ID28) and planned for
a spectrometer at SPring-8 (BL35XU). Figure 4(b) shows the set-up with an in-line mono-
chromator, currently used at the APS spectrometer (SRI-3ID-C).

7. Phonon intensities

The intensity from phonon scattering can be estimated for small values of Q. We start from
equation (3) and omit the terms for electronic scattering. Also, we can assume that Ef /Ei ≈ 1
and for small scattering angles e⃗i ∥ e⃗f , thus

d2σ

d$ dω
(Q⃗, ω) = r2

e Nf (Q)2Scoh
ion (Q⃗, ω). (24)

For S(Q⃗, ω) we apply the one-phonon cross section for a crystal with one atom per unit
cell [19]:

S(Q⃗, ω) = e−2W(Q⃗) h̄

2Mω0
|Q⃗ · e⃗Q⃗|2 [(n + 1)δ(ω − ω0) + nδ(ω + ω0)] (25)

where ω0 is the phonon frequency. At small Q the Debye–Waller factor e−2W(Q⃗) becomes
one and the eigenvector e⃗Q⃗ for the longitudinal acoustic phonons becomes parallel to Q⃗. The
occupation number n of an acoustic phonon can be approximated for small Q and ω0 by

n = 1
e(h̄ω0/[kBT ]) − 1

≈ kBT

h̄ω0
≫ 1. (26)
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without noticeable beam motion. However, because of equation (16), the monochromator and
the analyser have to be kept in a stable temperature environment.

This idea was realized by Toellner [18] and allows a tunability range up to ±100 eV at
an energy resolution of 1.4 meV. Because the beam leaves the monochromator in a forward
direction, it is also called an in-line monochromator. In contrast to the case for a single-crystal
backscattering monochromator, it is relatively easy to integrate it into a standard beamline
design (see also figure 4).

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

        in-line!
monochromator!

analyser!

detector!

sample!

backscattering!
monochromator!

analyser!

detector!

sample!

(a) 

(b) 

Figure 4. The design of a meV spectrometer with a backscattering monochromator (a) and with
an in-line monochromator (b).

5. The analyser

At the analyser, the divergence of the beam coming from the sample is larger than in the case
of the monochromator. Typically one tries to collect the radiation in a range of 1◦ × 1◦. As
described above, this can be done by spherically bent crystals in backscattering geometry.
However, to avoid bending stress, the analyser has to be cross grooved at the reflecting surface.
Therefore the analyser consists of many small flat crystals that are glued to a sphere (see
e.g. [4]). Two geometry contributions have to be considered: the demagnification contribution
and the flat-crystal contribution for an individual crystal pixel. In the following we derive all
the settings for the analyser depending on the energy resolution and the available pixel size at
the analyser. The beam divergence at a pixel with size p in a distance L from a point source is

δϵpixel = p

L
. (17)

In an experiment it is often crucial to have some amount of space around the sample to
accommodate certain sample environments like a furnace or a cryostat. On the other hand, the
x-ray detector has to be close to the sample to keep the demagnification contribution small.
If the demagnification contribution (15) is chosen to be of the same order or smaller than the
pixel size contribution (17),

D

2L

(

L

l
− 1

)

! p

L
. (18)
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14 14 8 24.374 0.69 74
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Where is quantum mechanics in all of this?
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2.2 Travelling waves

We next consider the equations of the waves travelling through crystals. In the general case, a wave of
wave vector k and angular frequency ! travelling through a crystal will displace an atom labelled j at
nominal position rj by

uj (rj , t) = ũj exp(i(k · rj − !t)) (2.4)

where ũj represents both the amplitude of the wave and its specific effect on atom j , and may be
a complex number (this is discussed in more detail in following sections). We remark here that the
definition of the position rj is treated in two ways in the scientific literature. It can be taken to represent
the actual position of the atom, or else it can be taken as the origin of the unit cell containing the atom. It
actually doesn’t matter, because the difference is merely a phase factor, which can be incorporated into
the complex amplitude ũj .

If we consider a single wave travelling through our one-dimensional mode with a particular value of
k and !, it will displace the two atoms by

u1,n(t) = ũ1 exp (i(kna − !t)) (2.5)

u2,n(t) = ũ2 exp (i(kna − !t)) (2.6)

where ũ1 and ũ2 are the relative amplitudes of motion of the two atoms. In this case we have treated the
vector rj for both atoms as the origin of the unit cell, r1 = r2 = na, rather than as the actual positions
of the atoms, na and (n + 1/2)a respectively. Thus the amplitude ũ2 will contain the phase factor
exp(ika/2). At this point we do not know the relationship between ũ1 and ũ2, nor will be able to think
about their absolute values until we introduce thermodynamics into the picture.

2.3 Equations of motion

Our starting point is to consider the energy of the two atoms in the unit cell labelled n through its
interaction with their two nearest neighbours:

E1,n = 1
2

J (u1,n − u2,n)2 + 1
2

J (u1,n − u2,n−1)2 (2.7)

E2,n = 1
2

J (u2,n − u1,n)2 + 1
2

J (u2,n − u1,n+1)2 (2.8)

The key equation we will be dealing with is simply Newton’s equation, force = mass × acceleration.
Thus we start by computing the force acting on each atom, as given by the derivative of the energy with
respect to displacement:

f1,n = −!E1,n

!u1,n
= −J (u1,n − u2,n) − J (u1,n − u2,n−1)

= −J (2u1,n − u2,n − u2,n−1) (2.9)

f2,n = −!E2,n

!u2,n
= −J (u2,n − u1,n) − J (u2,n − u1,n+1)

= −J (2u2,n − u1,n − u1,n+1) (2.10)

We next need to consider the acceleration of each atom, which is given as the second time derivative of
the atomic displacement:

ü1,n(t) = −!2ũ1 exp i (kna − !t) = −!2u1,n(t) (2.11)

ü2,n(t) = −!2ũ2 exp i (kna − !t) = −!2u2,n(t) (2.12)

Diatomic model
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2.5 Generalisation of the model

The simple model is easily generalised. First we consider more distant neighbours. To make this easier,
we combine and rewrite equations (2.7) and (2.8) as

E = 1
4

∑

n,n′

∑

j ,j ′

!j ,j ′

n,n′

(
uj ,n − uj ′,n′

)2 = 1
2

∑

n,n′

∑

j ,j ′

uj ,n!
j ,j ′

n,n′uj ′,n′ (2.35)

where !n,n′

j ,j ′ is the differential of an individual bond energy with respect to the displacements of the atoms

within the bond, !n,n′

j ,j ′ is the differential of the overall energy with respect to the atomic displacements,
and the factors of 1/4 instead of 1/2 arise because we need to account for the fact that the equation as
written involves counting every interatomic distance twice. The labels n and n′ denote unit cells, and
the labels j and j ′ denote atoms in the unit cell. In our initial model, j and j ′ had values 1 or 2, and we
restricted the set of n and n′ to same and nearest-neighbour unit cells. This generalisation now allows
more than two atoms in the unit cell, and allows interactions between atoms to span distances larger
than nearest neighbours. Close inspection of equation 2.35 shows that

"j ,j ′

n,n′ = −!j ,j ′

n,n′ +
∑

j ′,n′

#j ,j ′#n,n′!j ,j ′

n,n′ (2.36)

We proceed by writing the equation of motion for any atom in the unit cell as

uj ,n(t) = ũj exp (i (kna − $t)) (2.37)

Newton’s equations for this generalised model for the atoms in unit cell labelled n are now given as

$2ej =
∑

j ′,n′

1
√

mj mj ′
"j ,j ′

n,n′ exp(ik(n′ − n)a)ej ′ (2.38)

We can expand this in the form7

! $2e = D(k) · e ⇒ $2 = eT · D(k) · e (2.39)

where

e =

⎛

⎜⎜⎝

...
ej

...

⎞

⎟⎟⎠ (2.40)

and

! Dj ,j ′ (k) = 1
√

mj mj ′

∑

n′

"j ,j ′

0,n′ exp
(
ik · (rj ,0 − rj ′,n′)

)
(2.41)

and where we have generalised to three dimensions in our description of the wave vector and atomic
positions. Clearly in making the generalisation to three dimensions the matrix " also needs to be
expanded to include derivatives of the energy by the vector components of the displacements, but
the book-keeping becomes sufficiently complex (we need another pair of subscripts denoting x, y and
z vector components for the elements of matrix ") that for the purposes here it is best left to your
imagination.

Equations (2.39)–(2.41) represent diagonalisation of the dynamical matrix D(k), with the matrix of
solutions $2 representing the eigenvalues of D(k) and the matrix of e representing the eigenvectors.

7 Here we use the symbol ! to denote a key equation here and onwards in this article.

Generalized model
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n, n’ :  unit cells in the crystal 

 : differential of individual bond energy with respect to displacement 
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more than two atoms in the unit cell, and allows interactions between atoms to span distances larger
than nearest neighbours. Close inspection of equation 2.35 shows that

"j ,j ′

n,n′ = −!j ,j ′

n,n′ +
∑

j ′,n′

#j ,j ′#n,n′!j ,j ′

n,n′ (2.36)

We proceed by writing the equation of motion for any atom in the unit cell as

uj ,n(t) = ũj exp (i (kna − $t)) (2.37)

Newton’s equations for this generalised model for the atoms in unit cell labelled n are now given as

$2ej =
∑

j ′,n′

1
√

mj mj ′
"j ,j ′

n,n′ exp(ik(n′ − n)a)ej ′ (2.38)

We can expand this in the form7

! $2e = D(k) · e ⇒ $2 = eT · D(k) · e (2.39)

where

e =

⎛

⎜⎜⎝

...
ej

...

⎞

⎟⎟⎠ (2.40)

and

! Dj ,j ′ (k) = 1
√

mj mj ′

∑

n′

"j ,j ′

0,n′ exp
(
ik · (rj ,0 − rj ′,n′)

)
(2.41)

and where we have generalised to three dimensions in our description of the wave vector and atomic
positions. Clearly in making the generalisation to three dimensions the matrix " also needs to be
expanded to include derivatives of the energy by the vector components of the displacements, but
the book-keeping becomes sufficiently complex (we need another pair of subscripts denoting x, y and
z vector components for the elements of matrix ") that for the purposes here it is best left to your
imagination.

Equations (2.39)–(2.41) represent diagonalisation of the dynamical matrix D(k), with the matrix of
solutions $2 representing the eigenvalues of D(k) and the matrix of e representing the eigenvectors.

7 Here we use the symbol ! to denote a key equation here and onwards in this article.



φωνή (phonē), sound

•  Phonons are periodic oscillations in condensed systems.

•  They are inherently involved in thermal and electrical conductivity.

•  They can show anomalous (non-linear) behavior near a phase transition.

•  They can carry sound (acoustic modes) or couple to electromagnetic radiation or neutrons 
(acoustical and optical).

•  Have energy of ћω as quanta of excitation of the lattice vibration mode of angular   frequency ω. 
Since momentum, ћk, is exact, they are delocalized, collective excitations.

•  Phonons are bosons, and they are not conserved. They can be created or annihilated    during 
interactions with neutrons or photons.

•  They can be detected by Brillouin scattering (acoustic), Raman scattering, FTIR (optical).

• Their dispersion throughout the BZ can ONLY be monitored with x-rays (IXS), or neutrons (INS).

• Accurate prediction of phonon dispersion require correct knowledge about the force constants: 
COMPUTATIONAL TECHNIQUES ARE ESSENTIAL.

 PHONON’s: 
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We can now write the displacement of a single atom, labelled j in the unit cell of label ℓ in terms of
the mode eigenvector:

! ujℓ(t) = 1
√

Nmj

∑

k,!

ek,! exp(ik · rjℓ) Q(k, !, t) (3.2)

where we have now associated each mode eigenvector with a wave vector k, and introduced a new
complex quantity Q(k, !, t) that absorbs the time dependence and the actual amplitude. This new
quantity is called the normal mode coordinate. Equation (3.2) expresses the Fourier relationship between
atomic displacements in real space and the normal mode coordinates in reciprocal space. The factor of
1/

√
mj reflects the fact that the mode eigenvector contains a factor of √

mj , and the factor of 1/
√

N

will be seen to be convenient when we sum over all atoms.
Equation (3.2) can be adapted for the atomic velocity:

u̇jℓ(t) = 1
√

Nmj

∑

k,!

ek,! exp(ik · rjℓ) Q̇(k, !, t) (3.3)

We note that since Q(k, !, t) absorbs the time dependence, it will follow that

Q̇(k, !, t) = −i"k,!Q(k, !, t) (3.4)

and thus we can rewrite equation (3.3) as

u̇jℓ(t) = −i
√

Nmj

∑

k,!

"k,!ek,! exp(ik · rjℓ) Q(k, !, t). (3.5)

3.2 Energy of the crystal in terms of the normal mode coordinates

The prior definitions are convenient in going forward to compute the total kinetic energy of the crystal
in terms of its atomic vibrations. The final result, derived in Appendix A, is

1
2

∑

j ,ℓ

mj

∣∣u̇jℓ

∣∣2 = 1
2

∑

k,!

"2
k,! |Q (k, !)|2 (3.6)

Similarly, the harmonic potential energy of the crystal can be written as

1
2

∑

j ,j ′

ℓ,ℓ′

uT
jℓ · !j ,j ′

ℓ,ℓ′ · uj ′ℓ′ = 1
2

∑

k,!

"2
k,! |Q (k, !)|2 (3.7)

which is derived in Appendix A. Thus the total vibrational energy – kinetic energy plus potential
energy – is written as

! 1
2

∑

j ,ℓ

mj

∣∣u̇jℓ

∣∣2 + 1
2

∑

j ,j ′

ℓ,ℓ′

uT
jℓ · !j ,j ′

ℓ,ℓ′ · uj ′ℓ′ =
∑

k,!

"2
k,! |Q (k, !)|2. (3.8)

3.3 Quantisation of the vibrational energy: Phonons

To make further progress we need to understand that the energy of a harmonic oscillation is quantised in
units of !". We are most familiar with these quanta being applied to light, where they are called photons.
However, this quantisation applies to all harmonic vibrations, and a single wave of atomic oscillations
is similarly quantised; the quantum in this case is called a phonon.
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3.3 Quantisation of the vibrational energy: Phonons

To make further progress we need to understand that the energy of a harmonic oscillation is quantised in
units of !". We are most familiar with these quanta being applied to light, where they are called photons.
However, this quantisation applies to all harmonic vibrations, and a single wave of atomic oscillations
is similarly quantised; the quantum in this case is called a phonon.
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ek,! exp(ik · rjℓ) Q(k, !, t) (3.2)
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We note that since Q(k, !, t) absorbs the time dependence, it will follow that
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and thus we can rewrite equation (3.3) as
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3.2 Energy of the crystal in terms of the normal mode coordinates

The prior definitions are convenient in going forward to compute the total kinetic energy of the crystal
in terms of its atomic vibrations. The final result, derived in Appendix A, is
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Similarly, the harmonic potential energy of the crystal can be written as
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jℓ · !j ,j ′
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which is derived in Appendix A. Thus the total vibrational energy – kinetic energy plus potential
energy – is written as
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mj
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2

∑
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uT
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ℓ,ℓ′ · uj ′ℓ′ =
∑

k,!

"2
k,! |Q (k, !)|2. (3.8)

3.3 Quantisation of the vibrational energy: Phonons

To make further progress we need to understand that the energy of a harmonic oscillation is quantised in
units of !". We are most familiar with these quanta being applied to light, where they are called photons.
However, this quantisation applies to all harmonic vibrations, and a single wave of atomic oscillations
is similarly quantised; the quantum in this case is called a phonon.

Velocity
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We can now write the displacement of a single atom, labelled j in the unit cell of label ℓ in terms of
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quantity is called the normal mode coordinate. Equation (3.2) expresses the Fourier relationship between
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mj , and the factor of 1/
√

N
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We note that since Q(k, !, t) absorbs the time dependence, it will follow that

Q̇(k, !, t) = −i"k,!Q(k, !, t) (3.4)

and thus we can rewrite equation (3.3) as
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3.2 Energy of the crystal in terms of the normal mode coordinates

The prior definitions are convenient in going forward to compute the total kinetic energy of the crystal
in terms of its atomic vibrations. The final result, derived in Appendix A, is
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k,! |Q (k, !)|2 (3.6)

Similarly, the harmonic potential energy of the crystal can be written as
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k,! |Q (k, !)|2. (3.8)

3.3 Quantisation of the vibrational energy: Phonons

To make further progress we need to understand that the energy of a harmonic oscillation is quantised in
units of !". We are most familiar with these quanta being applied to light, where they are called photons.
However, this quantisation applies to all harmonic vibrations, and a single wave of atomic oscillations
is similarly quantised; the quantum in this case is called a phonon.

Kinetic energy

JDN 18 133
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Similarly, the harmonic potential energy of the crystal can be written as
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3.3 Quantisation of the vibrational energy: Phonons

To make further progress we need to understand that the energy of a harmonic oscillation is quantised in
units of !". We are most familiar with these quanta being applied to light, where they are called photons.
However, this quantisation applies to all harmonic vibrations, and a single wave of atomic oscillations
is similarly quantised; the quantum in this case is called a phonon.

Potential energy (via Virial theorem)
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We note that since Q(k, !, t) absorbs the time dependence, it will follow that
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and thus we can rewrite equation (3.3) as
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The prior definitions are convenient in going forward to compute the total kinetic energy of the crystal
in terms of its atomic vibrations. The final result, derived in Appendix A, is

1
2

∑

j ,ℓ

mj

∣∣u̇jℓ

∣∣2 = 1
2

∑

k,!

"2
k,! |Q (k, !)|2 (3.6)

Similarly, the harmonic potential energy of the crystal can be written as
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3.3 Quantisation of the vibrational energy: Phonons

To make further progress we need to understand that the energy of a harmonic oscillation is quantised in
units of !". We are most familiar with these quanta being applied to light, where they are called photons.
However, this quantisation applies to all harmonic vibrations, and a single wave of atomic oscillations
is similarly quantised; the quantum in this case is called a phonon.

Total energy, in terms of normal 
mode coordinates
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2.5 Generalisation of the model

The simple model is easily generalised. First we consider more distant neighbours. To make this easier,
we combine and rewrite equations (2.7) and (2.8) as

E = 1
4

∑

n,n′

∑

j ,j ′

!j ,j ′

n,n′

(
uj ,n − uj ′,n′

)2 = 1
2

∑

n,n′

∑

j ,j ′

uj ,n!
j ,j ′

n,n′uj ′,n′ (2.35)

where !n,n′

j ,j ′ is the differential of an individual bond energy with respect to the displacements of the atoms

within the bond, !n,n′

j ,j ′ is the differential of the overall energy with respect to the atomic displacements,
and the factors of 1/4 instead of 1/2 arise because we need to account for the fact that the equation as
written involves counting every interatomic distance twice. The labels n and n′ denote unit cells, and
the labels j and j ′ denote atoms in the unit cell. In our initial model, j and j ′ had values 1 or 2, and we
restricted the set of n and n′ to same and nearest-neighbour unit cells. This generalisation now allows
more than two atoms in the unit cell, and allows interactions between atoms to span distances larger
than nearest neighbours. Close inspection of equation 2.35 shows that

"j ,j ′

n,n′ = −!j ,j ′

n,n′ +
∑

j ′,n′

#j ,j ′#n,n′!j ,j ′

n,n′ (2.36)

We proceed by writing the equation of motion for any atom in the unit cell as

uj ,n(t) = ũj exp (i (kna − $t)) (2.37)

Newton’s equations for this generalised model for the atoms in unit cell labelled n are now given as

$2ej =
∑

j ′,n′

1
√

mj mj ′
"j ,j ′

n,n′ exp(ik(n′ − n)a)ej ′ (2.38)

We can expand this in the form7

! $2e = D(k) · e ⇒ $2 = eT · D(k) · e (2.39)

where

e =

⎛

⎜⎜⎝

...
ej

...

⎞

⎟⎟⎠ (2.40)

and

! Dj ,j ′ (k) = 1
√

mj mj ′

∑

n′

"j ,j ′

0,n′ exp
(
ik · (rj ,0 − rj ′,n′)

)
(2.41)

and where we have generalised to three dimensions in our description of the wave vector and atomic
positions. Clearly in making the generalisation to three dimensions the matrix " also needs to be
expanded to include derivatives of the energy by the vector components of the displacements, but
the book-keeping becomes sufficiently complex (we need another pair of subscripts denoting x, y and
z vector components for the elements of matrix ") that for the purposes here it is best left to your
imagination.

Equations (2.39)–(2.41) represent diagonalisation of the dynamical matrix D(k), with the matrix of
solutions $2 representing the eigenvalues of D(k) and the matrix of e representing the eigenvectors.

7 Here we use the symbol ! to denote a key equation here and onwards in this article.
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2.5 Generalisation of the model

The simple model is easily generalised. First we consider more distant neighbours. To make this easier,
we combine and rewrite equations (2.7) and (2.8) as

E = 1
4

∑

n,n′

∑

j ,j ′

!j ,j ′

n,n′

(
uj ,n − uj ′,n′

)2 = 1
2

∑

n,n′

∑

j ,j ′

uj ,n!
j ,j ′

n,n′uj ′,n′ (2.35)

where !n,n′

j ,j ′ is the differential of an individual bond energy with respect to the displacements of the atoms

within the bond, !n,n′

j ,j ′ is the differential of the overall energy with respect to the atomic displacements,
and the factors of 1/4 instead of 1/2 arise because we need to account for the fact that the equation as
written involves counting every interatomic distance twice. The labels n and n′ denote unit cells, and
the labels j and j ′ denote atoms in the unit cell. In our initial model, j and j ′ had values 1 or 2, and we
restricted the set of n and n′ to same and nearest-neighbour unit cells. This generalisation now allows
more than two atoms in the unit cell, and allows interactions between atoms to span distances larger
than nearest neighbours. Close inspection of equation 2.35 shows that

"j ,j ′

n,n′ = −!j ,j ′

n,n′ +
∑

j ′,n′

#j ,j ′#n,n′!j ,j ′

n,n′ (2.36)

We proceed by writing the equation of motion for any atom in the unit cell as

uj ,n(t) = ũj exp (i (kna − $t)) (2.37)

Newton’s equations for this generalised model for the atoms in unit cell labelled n are now given as

$2ej =
∑

j ′,n′

1
√

mj mj ′
"j ,j ′

n,n′ exp(ik(n′ − n)a)ej ′ (2.38)
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and
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0,n′ exp
(
ik · (rj ,0 − rj ′,n′)

)
(2.41)

and where we have generalised to three dimensions in our description of the wave vector and atomic
positions. Clearly in making the generalisation to three dimensions the matrix " also needs to be
expanded to include derivatives of the energy by the vector components of the displacements, but
the book-keeping becomes sufficiently complex (we need another pair of subscripts denoting x, y and
z vector components for the elements of matrix ") that for the purposes here it is best left to your
imagination.

Equations (2.39)–(2.41) represent diagonalisation of the dynamical matrix D(k), with the matrix of
solutions $2 representing the eigenvalues of D(k) and the matrix of e representing the eigenvectors.

7 Here we use the symbol ! to denote a key equation here and onwards in this article.

Eigenvalue eqn.

Eigenvalues are orthonormal..

directions. Thus the orientation of the axial Fe−N−O group is
most important for the in-plane vibrational directions. This is
similar to what has been concluded for the [Fe(OEP)(NO)]
case. This can be seen in the predicted character of the six most
intense in-plane vibrations for [Fe(DPIX)(NO)] shown in the
MOLEKEL61 depictions of Figure 7. The Fe−N−O orientation

effects may be slightly modified by the asymmetric effects of
peripheral substituents. Previous powder measurements on
Fe(Porph)(NO)], where derivatives included DPIX, PPIX, and
the dianion of mesoporphyrin IX dimethyl ester (MPIX),
showed that small changes in the peripheral porphyrin
substituents had real effects on the iron in-plane vibrational
envelope.62

Although the differences in the structures between [Fe-
(OEP)(NO)]53 and [Fe(DPIX)(NO)]45 are marginally sig-
nificant, at best, the differences are consistent with the observed
differences in the vibrational data. The length of the Fe−
N(NO) bond is 1.7307(7) Å in the OEP derivative and
1.723(3) Å in the DPIX derivative, consistent with the lower-
frequency value of 517 cm−1 in OEP and the 528 cm−1 value in
DPIX. The doming mode differences (158 cm−1 in OEP and
183 cm−1 in DPIX) might correlate with the small differences in
displacement from the four nitrogen-atom plane (0.28 Å in
OEP and 0.26 Å in DPIX), although vibrational mixing with
out-of-plane substituent displacement may also contribute.
Predicting the structural effects on the FeNO bend appears to
be more difficult, and in any case, there is not a meaningful
difference in the two Fe−N−O angles (142.7(1)° in OEP and
143.1(3)° in DPIX).
The current studies continue to demonstrate the unusual

properties of NO as a ligand in iron porphyrinate systems,
especially those of {FeNO}7 systems. These include a strong
trans-directing influence in six-coordinate {FeNO}7 spe-
cies,32−36,63,64 the off-axis tilting of the Fe−NO bond in both
five- and six-coordinate {FeNO}7 complexes,52,53,65 along with

the induced asymmetry of the equatorial Fe−Np bonds, and the
importance of the FeNO orientation on the direction of in-
plane iron motion.37,42 The present Investigation extends these
conclusions to a β-substituted porphyrin system more closely
resembling biologically occurring hemes. Although the bio-
logical significance of the structural deviations from axial
symmetry remain to be explored, the observation of five-
coordinate nitrosyl hemes in NO-signaling proteins66,67

continues to fuel discussion of the contribution of the trans-
directing influence of NO to activation of these proteins.
The important effects of the NO orientation on the iron

vibrational spectrum appears to continue to be significant in
related six-coordinate species. SIP NRVS data collection and
analysis on a crystallographically appropriate six-coordinate NO
derivative are in progress.

Summary. Detailed experimental and theoretical analyses of
oriented single-crystal NRVS of two five-coordinate NO
derivatives, [Fe(OEP)(NO)] and [Fe(DPIX)(NO)], show
that the strongly bonded axial NO ligand markedly affects the
direction of the in-plane iron motion. The major directions of
the in-plane motion are parallel and perpendicular to the
projection of the FeNO plane onto the porphyrin plane. These
directions are oblique to the direction of the in-plane Fe−NP
bonds. The effects of the axial ligand on the in-plane iron
motion appears to be related to the strength of the axial
bonding.
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in-plane vibrations based on the M06-L predictions.
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Figure 5. Schematic representation of the Brillouin zone in two dimensional reciprocal space. The boundaries
bisect and are normal to the vectors from the origin to the neighbouring reciprocal lattice points [2].

The task that we now move on to discuss is how to calculate the components of D(k) from models of
the interatomic potentials.

2.6 Brillouin zone

The wave equations introduced in equations (2.5) and (2.6) have one important property. If we add a
reciprocal lattice vector, G = 2!h/a (where h is an integer) to a value of k we find that

exp (i(G + k)na) = exp(iGna) × exp(ikna) = exp(inh2!) × exp(ikna) = exp(ikna) (2.42)

Thus we find that waves of wave vector k and k + G are identical in terms of their impact on the atoms.8

This result is easily generalise to three dimensions.
This being the case, we only need to consider the set of wave vectors that are not related to each

other by addition of a reciprocal lattice vector G. This set will be contained within the space around the
origin of reciprocal space of volume equal to the reciprocal unit cell. It is convenient to work with a
space-filling volume that is equivalent in size to the reciprocal unit cell but with boundaries that bisect
the vectors between the origin and neighbouring reciprocal lattice points rather than linking reciprocal
lattice points. This is illustrated in two dimensions in Figure 5. The boundaries of the Brillouin zone
have a particular significance in the nature of the dispersion curves, in that the zone boundaries usually
have !"/!k = 0.9

3. NORMAL MODE COORDINATES AND VIBRATIONAL AMPLITUDES

3.1 Definition of the normal mode coordinates

Up to this point we have said nothing about the amplitudes of vibrations save for noting that the e
eigenvector matrix contains information about relative atomic displacements. We denote a particular
eigenvector as e#, where # labels the eigenvector (or branch in the dispersion curve diagram), with
corresponding eigenvalue "2

#. We will also take it to be the case that eigenvectors are normalised and
orthogonal (the latter condition is determined by the mathematics of eigenvectors; the normalisation
condition is arbitrary but reasonable):

eT
# · e# = 1; eT

#′ · e# = $#′,# (3.1)

8 The two waves are not the same in the space between the atoms, but that is only empty space and the difference has no meaning.
9 The exception is when two modes are degenerate at the zone boundary but of different frequencies away from the zone boundary,
in which case the values of !"/!k for the two modes sum to zero.
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 PHONONS (cont’d)
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The energy of a single oscillation that is quantised can be written as the number of phonons excited,
n, plus a constant value:

! En =
(

n + 1
2

)
!! (3.9)

the additional constant value of !!/2 is called the zero point energy, and reflects the fact that in quantum
mechanics a harmonic oscillator can never be at rest. Thus we can write equation (3.8) as

E =
∑

k,"

!2
k," |Q (k, ")|2 =

∑

k,"

(
nk," + 1

2

)
!!k,". (3.10)

We have effectively switched the question from the wanting to know about the amplitude of the normal
mode to one of knowing the value of nk,". In practice it is not the instantaneous value of nk," that we
need, but its average value at a particular temperature. It turns out that the average value of nk," only
depends on k and " through the dependence on !k,":

!
〈
n(!k,")

〉
= 1

exp(!!k,"/kBT ) − 1
(3.11)

This is known as the Bose–Einstein equation. Given that the average number of excited phonons depends
only on the frequency, and that in a harmonic system its excited waves are independent of each other,
we can extract a single normal mode and write

!2
k,"

〈
|Q(k, ")|2

〉
=

(〈
n(!k,")

〉
+ 1

2

)
!!k," (3.12)

It is useful at this point to note that in the limit kBT > !!k,", the Bose–Einstein relation tends – actually
remarkably quickly – towards the approximate form

〈
n(!k,")

〉
+ 1

2
→ kBT /!!k," (3.13)

In this case, the total energy of a single wave tends towards the well-known classical value kBT .

3.4 Crystal Hamiltonian in terms of the normal mode coordinates

Using the previous analysis, the Hamiltonian of the harmonic crystal, namely the sum of the kinetic and
potential energies, is written in the form of

! H = 1
2

∑

j ,ℓ

mj

∣∣u̇jℓ

∣∣2 + 1
2

∑

j ,j ′

ℓ,ℓ′

uT
jℓ · #j ,j ′

ℓ,ℓ′ · uj ′ℓ′ =
∑

k,"

∣∣Q̇ (k, ")
∣∣2 +

∑

k,"

!2
k," |Q (k, ")|2

(3.14)

This is an extremely powerful equation, in part because it is very simple, and in part also because one
can imagine extending this for the effects of higher-order anharmonic interactions:

H = 1
2

∑

k,"

∣∣Q̇k,"
∣∣2 + 1

2

∑

k,"

!2
k,"

∣∣Qk,"
∣∣2 +

∑

n

1
n!

∑

k1···kn
"1···"n

$k1···kn

"1···"n
Qk1,"1 . . . Qkn,"n

(3.15)

It is outside the scope of this paper to explore this further, but for weakly anharmonic crystals it is
possible to treat the anharmonic terms as small perturbations of the harmonic Hamiltonian, and to
use various approximation schemes to incorporate them into the harmonic terms with renormalised
parameters.

Energy of a single oscillation as a function of number of phonons. 
The second term +1/2 is the “zero-point” energy. 
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The energy of a single oscillation that is quantised can be written as the number of phonons excited,
n, plus a constant value:

! En =
(

n + 1
2

)
!! (3.9)

the additional constant value of !!/2 is called the zero point energy, and reflects the fact that in quantum
mechanics a harmonic oscillator can never be at rest. Thus we can write equation (3.8) as

E =
∑

k,"

!2
k," |Q (k, ")|2 =

∑

k,"

(
nk," + 1

2

)
!!k,". (3.10)

We have effectively switched the question from the wanting to know about the amplitude of the normal
mode to one of knowing the value of nk,". In practice it is not the instantaneous value of nk," that we
need, but its average value at a particular temperature. It turns out that the average value of nk," only
depends on k and " through the dependence on !k,":

!
〈
n(!k,")

〉
= 1

exp(!!k,"/kBT ) − 1
(3.11)

This is known as the Bose–Einstein equation. Given that the average number of excited phonons depends
only on the frequency, and that in a harmonic system its excited waves are independent of each other,
we can extract a single normal mode and write

!2
k,"

〈
|Q(k, ")|2

〉
=

(〈
n(!k,")

〉
+ 1

2

)
!!k," (3.12)

It is useful at this point to note that in the limit kBT > !!k,", the Bose–Einstein relation tends – actually
remarkably quickly – towards the approximate form

〈
n(!k,")

〉
+ 1

2
→ kBT /!!k," (3.13)

In this case, the total energy of a single wave tends towards the well-known classical value kBT .

3.4 Crystal Hamiltonian in terms of the normal mode coordinates

Using the previous analysis, the Hamiltonian of the harmonic crystal, namely the sum of the kinetic and
potential energies, is written in the form of

! H = 1
2

∑

j ,ℓ

mj

∣∣u̇jℓ

∣∣2 + 1
2

∑

j ,j ′

ℓ,ℓ′

uT
jℓ · #j ,j ′

ℓ,ℓ′ · uj ′ℓ′ =
∑

k,"

∣∣Q̇ (k, ")
∣∣2 +

∑

k,"

!2
k," |Q (k, ")|2

(3.14)

This is an extremely powerful equation, in part because it is very simple, and in part also because one
can imagine extending this for the effects of higher-order anharmonic interactions:

H = 1
2

∑

k,"

∣∣Q̇k,"
∣∣2 + 1

2

∑

k,"

!2
k,"

∣∣Qk,"
∣∣2 +

∑

n

1
n!

∑

k1···kn
"1···"n

$k1···kn

"1···"n
Qk1,"1 . . . Qkn,"n

(3.15)

It is outside the scope of this paper to explore this further, but for weakly anharmonic crystals it is
possible to treat the anharmonic terms as small perturbations of the harmonic Hamiltonian, and to
use various approximation schemes to incorporate them into the harmonic terms with renormalised
parameters.

Total energy, in terms of normal 
mode coordinates
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The energy of a single oscillation that is quantised can be written as the number of phonons excited,
n, plus a constant value:

! En =
(

n + 1
2

)
!! (3.9)

the additional constant value of !!/2 is called the zero point energy, and reflects the fact that in quantum
mechanics a harmonic oscillator can never be at rest. Thus we can write equation (3.8) as

E =
∑

k,"

!2
k," |Q (k, ")|2 =

∑

k,"

(
nk," + 1

2

)
!!k,". (3.10)

We have effectively switched the question from the wanting to know about the amplitude of the normal
mode to one of knowing the value of nk,". In practice it is not the instantaneous value of nk," that we
need, but its average value at a particular temperature. It turns out that the average value of nk," only
depends on k and " through the dependence on !k,":

!
〈
n(!k,")

〉
= 1

exp(!!k,"/kBT ) − 1
(3.11)

This is known as the Bose–Einstein equation. Given that the average number of excited phonons depends
only on the frequency, and that in a harmonic system its excited waves are independent of each other,
we can extract a single normal mode and write
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k,"

〈
|Q(k, ")|2

〉
=

(〈
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)
!!k," (3.12)

It is useful at this point to note that in the limit kBT > !!k,", the Bose–Einstein relation tends – actually
remarkably quickly – towards the approximate form

〈
n(!k,")

〉
+ 1

2
→ kBT /!!k," (3.13)

In this case, the total energy of a single wave tends towards the well-known classical value kBT .

3.4 Crystal Hamiltonian in terms of the normal mode coordinates

Using the previous analysis, the Hamiltonian of the harmonic crystal, namely the sum of the kinetic and
potential energies, is written in the form of

! H = 1
2

∑
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mj
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∑
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ℓ,ℓ′
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k,"

∣∣Q̇ (k, ")
∣∣2 +

∑
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k," |Q (k, ")|2

(3.14)

This is an extremely powerful equation, in part because it is very simple, and in part also because one
can imagine extending this for the effects of higher-order anharmonic interactions:

H = 1
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∣∣Q̇k,"
∣∣2 + 1

2
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k,"

!2
k,"

∣∣Qk,"
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Qk1,"1 . . . Qkn,"n

(3.15)

It is outside the scope of this paper to explore this further, but for weakly anharmonic crystals it is
possible to treat the anharmonic terms as small perturbations of the harmonic Hamiltonian, and to
use various approximation schemes to incorporate them into the harmonic terms with renormalised
parameters.

Bose-Einstein statistics for average number  
of modes at a given temperature
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The energy of a single oscillation that is quantised can be written as the number of phonons excited,
n, plus a constant value:

! En =
(

n + 1
2

)
!! (3.9)

the additional constant value of !!/2 is called the zero point energy, and reflects the fact that in quantum
mechanics a harmonic oscillator can never be at rest. Thus we can write equation (3.8) as

E =
∑
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k," |Q (k, ")|2 =
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2

)
!!k,". (3.10)

We have effectively switched the question from the wanting to know about the amplitude of the normal
mode to one of knowing the value of nk,". In practice it is not the instantaneous value of nk," that we
need, but its average value at a particular temperature. It turns out that the average value of nk," only
depends on k and " through the dependence on !k,":
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This is known as the Bose–Einstein equation. Given that the average number of excited phonons depends
only on the frequency, and that in a harmonic system its excited waves are independent of each other,
we can extract a single normal mode and write
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It is useful at this point to note that in the limit kBT > !!k,", the Bose–Einstein relation tends – actually
remarkably quickly – towards the approximate form
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〉
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2
→ kBT /!!k," (3.13)

In this case, the total energy of a single wave tends towards the well-known classical value kBT .

3.4 Crystal Hamiltonian in terms of the normal mode coordinates

Using the previous analysis, the Hamiltonian of the harmonic crystal, namely the sum of the kinetic and
potential energies, is written in the form of
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This is an extremely powerful equation, in part because it is very simple, and in part also because one
can imagine extending this for the effects of higher-order anharmonic interactions:

H = 1
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It is outside the scope of this paper to explore this further, but for weakly anharmonic crystals it is
possible to treat the anharmonic terms as small perturbations of the harmonic Hamiltonian, and to
use various approximation schemes to incorporate them into the harmonic terms with renormalised
parameters.

Hamiltonian of the system: 

H=Kin. En. + Pot. En 



Phonon density of states

Many thermodynamic functions like free energy, specific heat, and entropy are 
additive functions of phonon density of states.  

This stems from the notion that the normal modes do not interact in the harmonic 
approximation.  

Phonon density of states is the number of modes in a unit energy interval. 

cv (T ) = 3Nk
h2ω 2ehω kT

(kT )2 (1− ehω kT )2∫ ⋅ g(ω) ⋅dω Vibrational specific heat



cv (T ) = 3kB (βE / 2)2 csch(βE)∫ ⋅ g(E) ⋅dE

If we choose to write in terms of energy, 

Sv (T ) = 3kB βE 2•coth(βE){ − ln 2sinh(βE)[ ]}⋅ g(E) ⋅dE
0

∞

∫

E = hω,    β =1 kBT

Vibrational specific heat

Vibrational entropy

fLM = e
−ER {g(E )/2}.coth(βE 2)∫ dE Lamb-Mössbauer factor

Debye Sound velocity

Phonon density of states is a key ingredient for many thermodynamic properties

g(E) = 3m
2π 2h3ρvD

3 E
2

F =
M
h2

E 2g(E)dE
0

∞

∫ Average restoring force constant
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4. THERMODYNAMICS AND DENSITY OF STATES

4.1 Thermodynamic functions

In the derivation of the Bose–Einstein distribution given in Appendix B, we derive the equation for the
partition function of a harmonic oscillator of angular frequency !, Z:

Z = 1
1 − exp(−"!!)

(4.1)

The free energy is related to Z via

F = −kBT lnZ (4.2)

and thus we obtain

! F = kBT
∑

k,#

ln[2 sinh(!!k,#/2kBT )] (4.3)

Other thermodynamic quantities, such as the heat capacity, can be obtained by appropriate
differentiation of F (e.g. the heat capacity is equal to −T !2F/!T 2).

4.2 Density of states

Given that the thermodynamic functions only depend on the frequency of the normal mode and not
directly on its wave vector or mode eigenvector, one way to perform the summations over all modes
and wave vectors is to simply generate a list of frequency values for a grid of wave vectors from one’s
favourite lattice dynamics program.10 If the grid is sufficiently fine, it is possible to then generate a
histogram of frequency values, and such a histogram is called the density of states, g(!). Formally we
note that the density of states is defined such that the number of modes with angular frequency in the
range ! → ! + d! is equal to g(!)d!. Then the summations in the thermodynamic functions can be
replaced by appropriate integrals. For example, the energy can be written as

E =
∑

k,#

(〈
n(!k,#)

〉
+ 1

2

)
!!k,# ≡

∫ (
⟨n(!)⟩ + 1

2

)
!! g(!) d!. (4.4)

From a computational perspective, this is not particularly interesting. However, in the limit of
low-frequency, the density of states only contains contributions from the acoustic modes, and in
this case it is possible to obtain a mathematical equation for g(!). Moreover, for thermodynamic
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Inelastic x-ray scattering measurements of phonon dispersion and lifetimes in PbTe1−xSex alloys: 
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be well represented by phonons in PbTe1−xSex alloys despite 
the potential existence of diffusons [12–14]. We first assume 
phonons are applicable and then check the validity at the end.

Theoretical study of vibrational modes in alloy systems 
is limited due to the breaking of the long-range translational 
symmetry. One typical approach to estimate the vibrational 
modes’ behaviors is the virtual crystal (VC) model [15], 
where the disordered crystal is replaced with an ordered one 
of the average lattice parameter, atomic mass and force con-
stants according to the composition. Both phonon–phonon 
and phonon-disorder scattering are included as perturbations 
[9, 14–17]. Using force constants from ab initio density func-
tional perturbation theory (DFPT) calculations and taking into 
account mass disorder, the VC model was able to well repro-
duce the experimental thermal conductivity of Si1−xGex alloys 
[17]. Applying the same approach to PbTe1−xSex alloys, the 
calculated results, however, significantly underestimate the 
alloy induced reduction in thermal conductivity as shown in 
figure 1. This calls into question the applicability of the VC 
model. For instance, it is questionable to only include first-
order perturbation instead of full-order perturbation for scat-
tering rates once the VC model departs from the dilute limit  
(x is close to 0 or 1). It is unclear how the scattering pic-
ture transitions from isolated scatterers in the dilute limit to 
dependent scattering in the non-dilute mixing limit (x is close 
to 0.5), which is similar to localized and extended states in 
electronic materials. Meanwhile, whether the independent 
scattering theory overestimates or underestimates the scat-
tering rates strongly depends on the frequency range and the 
system itself because the wave interference may result in 
phonon localization or weaker phonon-disorder scattering [14, 
18, 19]. It is also reasonable to question why the perturbation 
theory should hold at all in the non-dilute limit. Additionally, 
there are general open questions about alloys. For example, if 
one uses a supercell to calculate alloys, the group velocities 
diminish due to zone folding. The proper treatment of phonon 
group velocities has been under debate.

On the other hand, experimental data are limited for 
PbTe1−xSex alloys, making it difficult to assess the validity of 
the VC model. In this work, we report measurements of the 
phonon dispersion and linewidths of PbTe1−xSex alloys using 
high-energy resolution inelastic x-ray scattering (IXS). The 
main purpose of this work is to close the gap between the exper-
imental data and theoretical data, and offer insights on those 
open questions in thermal transport of alloys. By comparing 
the experimental data with calculated values based on the VC 
model, we mainly discuss the validity of VC model and address 
fundamental questions about mode description in alloys.

Thermal conductivity, k, based on the Boltzmann equa-
tion under the relaxation time approximation is given by the 
well-known formula [21]

!∑ τ ω=
Ω

∂
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q q q

q
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s s s

s
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where Ω is the volume of the unit cell, v is the amplitude of 
group velocity, τ is the lifetime, ω is the frequency and n is the 
Bose–Einstein distribution. For a given material, frequency, 
group velocity and lifetime are the three key parameters to 
determine thermal conductivity. Lifetimes are reciprocal to 
the linewidths of phonon peaks.

Single crystals of PbTe1−xSex alloys were grown by an 
unseeded physical vapor transport method [22]. The starting 
materials of Pb, Te, and Se of purity 99.999% from Alfa Aesar 
were loaded into a quartz ampoule with a diameter of 0.5 in. 
in an Ar environment. The ampoule was evacuated to about 
3   ×   10−6 mbar, then quickly sealed using a hydrogen torch 
and loaded into a box furnace. The ampoule was heated up to 
1075 °C, soaked for 5 h, and then furnace quenched down to 
room temperature. The broken pieces of the precursor were 
sealed and uniformly distributed horizontally in an evacuated 
quartz ampoule. The ampoule was then placed in a horizontal 
tube furnace and one end of the furnace was held at 850 °C 
for 4 d followed by slow cooling at a rate of about 50 °C h−1 
down to room temperature. This allowed crystals to nucleate 
and grow at the cooler end of the ampoule. Square-shaped 
and plate-like crystals up to a few millimeters in size were 
obtained and the Θ–2Θ scan data from a Bruker D2 Phaser 
system determined the crystal facet to be (1 0 0) for all the sto-
ichiometry ratios. The single crystals were then thinned down 
to the thicknesses of ~20–25 µm by a combination of focused 
ion beam and mechanical thinning.

We prepared two samples: PbTe0.25Se0.75, and PbTe0.5Se0.5. 
The chemical composition of each crystal has been determined 
by energy dispersive x-ray spectroscopy (EDX). Table 1 sum-
marizes the EDX results. The actual compositions are fairly 
close to the targeted ones.

Figure 1. Thermal conductivity as a function of composition 
for PbTe1−xSex alloys by VC calculation [9] and experimental 
measurements [20].

Table 1. The targeted sample compositions and measured mean 
atomic percent from EDX measurements.

Targeted 
composition

Measured mean atomic percent (%)

Pb Te Se

PbTe0.25Se0.75 ±50.24 0.67 ±11.51 0.21 ±38.25 0.50
PbTe0.5Se0.5 ±50.53 0.18 ±26.21 0.10 ±23.26 0.08
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Based on the x-ray diffraction (XRD) as shown in figure 2, 
both samples demonstrate single-crystalline features. The lat-
tice constants of PbTe0.25Se0.75 and PbTe0.5Se0.5 were found to 
be 6.221 Å and 6.311 Å, respectively. The full width at half 
maximum (FWHM) of rocking curve of PbTe0.25Se0.75 meas-
ured at [2 2 0] reflection is 0.12°. Most of the Bragg reflections 
on XRD patterns of PbTe0.5Se0.5 were elongated transversely 
to short lines, though. This indicates that the structures of 
PbTe0.5Se0.5 slightly deviate from those of perfect crystals.

The inelastic x-ray scattering (IXS) measurements were 
carried out at room temperature at the XOR 3-ID HERIX 
beam line of the Advanced Photon Source, Argonne National 
Laboratory [23–25]. The synchrotron-based IXS technique pro-
vides meV energy resolution. It is a photon-in/photon-out spec-
troscopy where one measures both the energy and momentum 
changes of the scattered photon. The spectra were character-
ized by an elastic peak centered at zero energy and two inelastic 
peaks associated with the creation and annihilation of a phonon 
as shown in figure 3. We applied damped harmonic oscillator 
(DHO) model to describe the inelastic line shapes. The meas-
ured energy spectra were fitted with a model function convo-
luted with a pseudo-Voigt function for the instrument resolution 
which was measured separately. The model function consists 
of a Lorentzian distribution for the elastic part and a pair of 
Lorentzians, constrained by the thermal phonon population 
factor, for the inelastic part. The measurements were performed 
with a momentum resolution of 0.7 nm−1 by a slit in front of 
the analyzer. The distribution of this momentum resolution 
would introduce a distribution in the excitation energy and the 
measured phonon linewidth would be affected by this energy 
distribution. We therefore subtracted the phonon linewidth due 
to the limited momentum resolution and obtained the phonon 
linewidth due to phonon–phonon scattering. After fitting each 
q point, we obtained the phonon dispersion and linewidths. The 
inverse of phonon linewidths give phonon lifetimes.

The measured phonon frequency versus wavevector along 
three high symmetry lines are plotted in figure  4 along with 
the calculated dispersions. The detailed calculation procedure 
can be found elsewhere [9, 15, 17]. The accuracy of the DFPT 
force constants incorporated into the VC model has been borne 
out by the detailed study in PbSe and PbTe [9]. In general, our 

experimental results agree satisfactorily with those of the VC 
calculations. Even the Kohn-like anomaly around the zone 
center along [1 0 0] TA and [1 1 0] TA are matched to certain 
extent. The good agreement indicates that the VC model is a 
reasonable approximation in predicting the acoustic phonon dis-
persion of the PbTe1−xSex alloys. Considering that the phonon 
dispersion of pure PbSe and pure PbTe, as shown in figure 4(c), 
are not far apart from each other, the average quantities utilized 
by the VC model tend to be a good estimation for their alloys. 
This good agreement also suggests that it is reasonable to esti-
mate phonon group velocities using the VC model, which has 
also been pointed out by Larkin and McGaughey [14].

Notably, one exception is the [1 1 1] TA modes. While 
the calculated dispersion curves of [1 1 1] TAs for pure PbSe 
and PbTe surprisingly fall on top of each other (figure 4(c)), 
their averaged properties overestimate [1 1 1] TA modes for 
PbTe0.5Se0.5 (figure 4(b)). In other words, the softening of 
[1 1 1] TA modes are intriguing, but not captured by simply 
averaging the quantities in the VC model. The ability to 
capture the softening is essential for the accurate predic-
tion of thermal conductivity because the softening not only 

Figure 2. XRD patterns of (a) PbTe0.25Se0.75 and (b) PbTe0.5Se0.5.

Figure 3. Typical energy spectra from the measurement (in blue 
circles), resolution function in green and the model function in red. 
The blue solid line denoted the convolution between the resolution 
function and the fitting core.
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Do phonons remain a good representation of the vibrational modes in PbTe1−xSex alloys when alloying 
seems to decrease thermal conductivity?

ZT = S2σT /κ where S, σ, κ, T represent the Seebeck coefficient, electrical conductivity, thermal conductivity 
and absolute temperature. For thermoelectric materials, higher ZT is desirable, hence lowering κ while 
keeping σ is required.  

Phonon lifetime measurements is one way to learn why thermal conductivity is lowered upon alloying.
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influences the frequencies of these modes but affects phonon–
phonon scattering rates as well. The softening can be related 
to the transition from independent scatterers in the dilute limit 
to the dependent scattering in the highest concentration limit. 
The softening may also relate to the slight distortion from 

the perfect crystalline structure suggested by XRD. Phonon 
softening was observed in metal alloys and was attributed 
to structural phase transition [26–28], yet there is no experi-
mental evidence of phase transition in PbTe1−xSex alloys.  
A deep understanding of the [1 1 1] TA modes in PbTe1−xSex 
alloys requires future investigation.

While the direct comparison of dispersion curves between 
the experiments and calculations gives us confidence in the 
phonon frequencies and group velocities based on the VC 
model, the discrepancy of thermal conductivity between the 
calculations and experiments as shown in figure 1 has to be 
attributed to phonon lifetimes. We plot the measured phonon 
lifetimes against the calculated phonon lifetimes in figure 5. 
It shows that the VC model in general moderately overesti-
mates phonon lifetimes for both samples. This may due to the 
following facts: (1) The calculated lifetimes did not include 
the influence from the difference in bonding strengths and 
lengths. While the mass ratio between Ge and Si is 2.6 and 
mass-disorder dominates the disorder scattering, the mass dif-
ference between PbSe and PbTe is only 17% and the force 

Figure 4. Markers are measured acoustic phonon dispersion: circles 
for transverse acoustic (TA) modes and crosses for longitudinal 
acoustic (LA) modes; solid lines are calculated acoustic phonon 
dispersion based on virtual crystal model for (a) PbTe0.25Se0.75  
(b) PbTe0.5Se0.5. (c) Calculated phonon dispersion based on DFPT 
(lines: blue solid line for PbTe and black dashed line for PbSe) 
based on our earlier work [9] and measured phonon dispersion by 
inelastic neutron scattering (markers) from [29, 30] for PbSe and 
PbTe: blue circles for PbTe TA modes and blue crosses for PbTe 
LA modes; black squares for PbSe TA modes and black diamonds 
for PbSe LA modes. The error bars are smaller than the size of the 
circles/crosses in the figure.
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Figure 5. Measured acoustic phonon lifetimes and calculated 
acoustic phonon lifetimes based on virtual crystal model as a 
function of phonon frequencies: circles for transverse acoustic 
(TA) modes and crosses for longitudinal acoustic (LA) modes 
for (a) PbTe0.25Se0.75 (red: calculated and blue: measured) and 
(b) PbTe0.5Se0.5 (mauve: calculated and black: measured). Green 
dashed line denotes the Ioffe–Regel limit. The error bars are smaller 
than the size of the circles/crosses in the figure.
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Mott-Ioffe-Regel limit (MIR) : When electron scattering rate is comparable to Fermi energy, EF/h,  
thermal resistivity reaches its maximum. The discrepancy between virtual crystal approximation  and 
measured thermal conductivity can be attributed to mass disorder as well as force constant variations. 

The experimental data on phonon lifetimes provide a bench mark for theoretical work to directly compare 
lifetimes and advance our understanding of the thermal transport in alloys.
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Why x-rays instead of neutrons or visible light ?

ΔE

Δp

Vliquid

thermal  
neutrons

Vneutron

Limited momentum transfer capability of neutrons at low energies favor 
x-rays to study collective excitations with large dispersion, like sound 
modes.

When the sound velocity exceeds that of neutrons in the liquid, x-rays 
become unique. The low-momentum/high-energy transfer region is 
only accessible by x-rays.



Inelastic X-Ray Scattering: two approaches
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Nuclear Resonant Scattering
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Sample

NRIXS: Nuclear Resonant Inelastic X-ray Scattering
NRVS: Nuclear Resonant Vibrational Spectroscopy

SMS: Synchrotron Mössbauer Spectroscopy
NFS : Nuclear Forward Scattering
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KERNRESONANZABSORPTION

3. Yersudreanordnung unil Meßergebnisse

,A.bb.2 zeigt die Versudrsanordnung. Der Aufbau
der Kryostaten wurde frühers besdr¡ieben. Der Re-
sonanzabsorber (Iridium) und ein Vergleidrsabsor-
ber (Platin) konnten wedlselweise in den Strahlen-

ñ¿,Þ19N
l0 cm

Àbb. 2. Versudrsgeometrie. Â Abso¡ber-Kryostat; Q rotieren-
der Kryostat mit Quelle; D Szintillationsdetektor. M ist der
bei der Messung rusgenützte Teil des Rotatiqsk¡eises de¡

Quelle.

VON ?-STRÁHLUNG IN Ilor

Strahlungsintensitäten hinter den beiden Absorbern
bestimmt. Die gesamte Meßzeit betrug 14 Tage, Die
Strahlungsintensität hinter dem Vergleidrsabsorber
(Pìatin) war innerhalb der Grenzen der Meß-
genauigkeit unabhängig von der Relativgesdrwin'
digkeit a, Die eingetragenen miuleren Fehìer wur-
den aus den Sdrwankungen der Einzelmessungen
bestimmt und sind immer größer als die statistischen
Fehle¡. Beim vorliegenden Experiment wurde der
Fall ,,sdrwadrer Absorption" tGl. (Il)l nodr nidrt
verwirklidrt, Die eingetragene, den Meßwerten ange-
paßte Kuwe wurde auf nume¡isdrem lVege nadr
(10) beredrnetls und entspridrt einer Niveaubreite
f : (4,6+0,6).10-6 eV für das 129 keV-Niveau
in I¡101. Bei der Beredrnung des Absorptionsquer-
sdrnittes nach (9) wurde das Sdrwingungsspektrum
des Abso¡bers durdl ein D¡sy¡sches Spektrum mit
einer Ds¡v¡-Temperatur @:285oK angenähert.
Diese Näherung ergibt eine zusätzlidre, unter den
Bedingungen des vorliegenden Experimentes aller.
dings unerhebliche Unsicherheit in der Bestimmung
von .l'.

4. Diskussion
In der früheren Arbeits wurde {ür die partielle

Lebenszeit z, für Strahlungsemission des 129 keV-
Niveaus in lr1el ein lVert von

z': (3'61å:å)' lo-10 sec

gef unden. Mit dem Konve¡sionsko elfrzienten a : 2,47
nadr Dnvrs und Mitarb, to folgt daraus für die Le-
benszeit r:bl(t + d) :1,0 1!'l¡. to-to ss¿.
Die Unsdlärfe¡elation ergibt mit de¡ im vorliegen.
den Experiment bestimmten Niveaubreite für die
Lebenszeit des 129 keV.Niveaus in Ir1Ð1:

u: (I,41åÍ)' lo-10 sec .

Wir sehen den im vorliegenden Experiment ge-
womenen Wert als zuverlässiger an und ve¡zidrten
auf eine Mittelung der Ergebnisse der beiden nadi
ve¡sdriedenen Methoden vorgenommenen Messun-
gen, wegen der Unsidrerheit in dem Wert des Kon-
versionskoeffizienten ø und weil sidr bei der f¡ühe-
ren Messung systematische Fehler wesentlidr sdrwie-

r3 Für die Redrnung wu¡den veruendet 1s:3/2 (s,.{¡m.14);
/¡:5/2 (s. Anm. ls) ; z : 1,07' l02r cm-t ; Îq: ?"a:88 oK.

!4 K. Mun¡uqr u. S. Sum, Phys. Rev. 87, f048 [952].
16 J. W. Mruorrcu, M. McK¿owr u. M. Gorouenen, Phys. Rev,

96, ì4s0 lr9s4l.r0 R,H.Devrs, A,S,Drvaru, D.A.L¡no u. R.D.Morrlt, Phys.
Rev.103, 1801 [1956],
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Abb, 3, Retatives Intensitätsverhälttris (Ilr-/Pt)/Pt de! hin-
te¡ lridium- bzw. Platinabsorbern gemessenen 7-Strahlung als
Funktion der G*drwindigkeit der Quelle relativ zu den Ab'
5e¡!s6. E:(u/c)'Ei ist die Energieversdriebung der 129 keV'
Quanten relativ zu den ruhenden .Abso¡be¡n. Als Strahlungs-
quelle diente eine 65 mcu¡ie stalke OsEiumquelle, de¡en

Zerlallsspektrum die I29 keV-Linie in I¡!0r enthält.

gang gebradrt werden. Die Absorbe¡ und die Quelle
befanden siel auf der Temperatur des flüssigen O, '
Das Szintillationsspektrometer wurde durdr eine
Photozelle so gesteuert, daß nur soldre Quanten
registriert wurden, die von der Strahlenquelle wäh'
rend ihres Aufenthaltes längs des markierten Teiles
ihres Rotationskreises emittiert wurden.

Abb.3 zeigt die Meßergebnisse' Jeder einzelne
Meßpunkt wurde aus etwa je l0 Messungen der

v: 216 H.VOSHAGE UND H.HINTENBERGER

riger ausschließen lassen als bei der vorliegerlden,
mehr direkten Messung der Niveaubreite.

Die in der vorliegenden Arbeit besdrriebene Me.
thode der Versdriebung,,rüdcstoßfreier,. T.Linien
auf medranisdrem Wege gestattet eine unmittelbare
Bestimmung de¡ Niveaubreiten und damit audr der
Lebenszeiten niedriger, angeregter Zustände von
Kernen, die in Festkörpern gebunden sind. Die Me-
thode eignet sidr u. a. hervorragend zur Messung
von Lebenszeiten energetisdr niedriger Ke¡nzuständã
in dem Übergangsgebiet von 10-10 bis 10-11 sec,
das mit de¡ Methode der verzöqerten Koinzidenzen
schwer erfaßbar ist. Der großJVo¡teil dieser Me-
thode liegt bei Messungen von Lebenszeiten der
Größenordnung l0-r0 sec darin, daß die e¡forder-
Iidren Versdriebungen der Quantenenergien nur von
der Größenordnung der natü¡lidren Linienb¡eite

sind und daher nur Relativgeschwindigkei.
Größenordnung cm/sec benötigt werden, im
satz zu der um G¡ößenordnungen höhere Ge
digkeiten erforde¡nden Ultrazentrifusenme
bei der die thermisdr verbreite¡ten Lin-ien sr
ander versdroben werden. Das besclriebenJ
¡en bietet darüber hinaus im Energiegebiet
7-Strahlung eine einfadre Möglidrkeit, die Re
streustrahlung von der St¡eustrahlung der I
nenhülle, insbesondere von der Rryrrrc:
strahlung gleicher Wellenlänge, zu untersdre

Die Untersuihungen werden foltgesetzt.
Es ist mi¡ ein Änìiegen, Her¡n Professor H,

LBlsnrrz für sein reges Interesse und fördernde
sionen herzlicl zu danken, He¡¡n Professo¡ K.
rnrouns danke idr dafü¡. daß er die Du¡drführ¡
Arbeit am Max-PlancÌ-Institut Iür medizinisd
schung in Heidelberg ermöglidrt hat.
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3. Yersudreanordnung unil Meßergebnisse

,A.bb.2 zeigt die Versudrsanordnung. Der Aufbau
der Kryostaten wurde frühers besdr¡ieben. Der Re-
sonanzabsorber (Iridium) und ein Vergleidrsabsor-
ber (Platin) konnten wedlselweise in den Strahlen-

ñ¿,Þ19N
l0 cm

Àbb. 2. Versudrsgeometrie. Â Abso¡ber-Kryostat; Q rotieren-
der Kryostat mit Quelle; D Szintillationsdetektor. M ist der
bei der Messung rusgenützte Teil des Rotatiqsk¡eises de¡

Quelle.

VON ?-STRÁHLUNG IN Ilor
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f : (4,6+0,6).10-6 eV für das 129 keV-Niveau
in I¡101. Bei der Beredrnung des Absorptionsquer-
sdrnittes nach (9) wurde das Sdrwingungsspektrum
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Fra. 1. The relative intensity of 129-kev gamma rays transmitted by the i¡idium absorber
as measured by Mössbauer with both sou¡ce and ¿bsorber at 88oK, as a function of source
speed. The ordinate is dependent upon the sou¡ce thickness. The width of the dip in the
transmission for a thin absorber is dependent only on the natural width of the 129-kev nu-
clear level. The curve here is theoretical and will be discussed in Part IV; the experimental
points are taken from the third of Mössbauer's pâpe¡s (2), Fig. 3.

effect." Here he kept both source and absorber at 88o K, but had the source
mounted on a turntable, so that the relative velocity of the source and abso¡ber
during the time the source was seen by the absorber could be controlled. Figure
1 shows the variation of transmission he observed as a function of turntable
speed. The absorption peak is centered at, zeto relative speed of the source with
respect to the absorber; it has a half-width of about 1 cm/sec.

When the abscissa is converted to energy units corresponding to the Doppler
shift in the gamma energy 6fi : (u/c)86 , the points can be fitted within statis-
tical error by a Breit-Wigter curve of width (9.2 + 1.2) X 10-6 ev. This is
interpreted to be twice the natural width of the 129-kev level, the f.actor of. 2
arising because the observed absorption is the result of folding an emission
spectrum together with an absorption cross section, each of which have a "no-
recoil pip" of width I. In the thin-absorber approximation; the absorption is
proportional to the product of the emission spectrum with the absorption cross
section, integrated over all energies. ,\l zero relative velocity the pips overlap
perfectly; at velocities large compared to lc/Eo the overlåp is destroyed, and
the absorption disappears.

The other measurement of Mössbauer's which we wish to discuss here is his
observation of the "temperature effect." Here he had both source and absorber
at rest, with the absorber at a fixed temperature of 88o K, and the source tem-
perature variable from 88" to above room temperature. He measured the trans-
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Á.BSORPTION OF GAMMAS BY CRYST. ,I,S

SOURCE TEMPERATURE OK

Fra. 2. the effective absorption cross section per Irler nucleus, for the absorber crystal
at 88'K and the source temperature given by the absciss¿. the curve is a theoretical one to
be discussed in Part IV; the experimental points are taken from Mössbauer's first paper (9),
Fig. 8b.

mission of the 129-kev gammas through the absorber as a function of sourde
temperature. His results, which were expressed in terms of effective absorption
cross sections, are sho\ryn in Fig. 2. The rise in the crossrsection with decreasing
temperature (quite contrary to its behavior with gaseous sources and absorbers)
is interpreted as being caused by the increase in the probability of no-recoil
emission by the nuclei in the sburce as the temperature is lowered. The absorber
temperature was not varied in this measlrrement because any temperature de-
pendence of the non-nuclear absorption cross section of the atoms in the crystal
(mostly K-photoeffect) would obscure the temperature dependence of the nu-
clear absorption which Mössbauer sought to measure.

An explanation of these results was achieved by Mössbauer by modifying a

theory due to Lamb (9), describing the resonance absorption of neutrons by
nuclei bound in crystals, to apply to the gamma-absorption process.

III. THEORY
We will now explain Lamb's notation and outline his theory.
The crystal is described by a wave function which depends on the center-of-
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Kernresonanzabsorption von y-Strahlung in lr'n'
Von Rr¡¡or,¡' L. Mösss¡u¡n

Aus dem Labo¡atorim fü¡ teúnisùe Physik der Teùnisùen Hodtsdrule in Mündren
uEd dem lûstitut für Physik im Max-Pland{-Institut für hedizinisdre Forsdrung in Heidelberg

(2. NaturfoEùs. 1{ !, 2ll-2¡6 [1959] ; eins€gesê¡ ab 5. NoyeEbê¡ 1958)

Bei de¡ Emission uûd SelbstabsoDtion von weidrer 7-Strahlung iu Kemen treter bei tiefen Tem-
pe¡atulen in Festköryem sebr starke Linien Eit de¡ natü¡lidren Linienb¡eite Âuf. Diese Linien er-
sdreinen als Folge davon, doß bei tiefen Temperaturen bei einem Teil der Quânte!übergäuge der
/-Rüd<stoßimpuls nicht meb¡ vom einzelnen Kern eufgenommen wird, sonden von dem K¡istall als' Ganzes, Da die sdrarfen Emissions- und Absorptionslinien energetisdr an der gleidren Stelle liegen,
ttitt ein sehr stalker Resnanzûuo¡eszenzeffekt auf, Du¡d¡ eine ,Zentrifugen"-Methode, bei der die
Emissions. und Absorptionslinien gegeneinander ve¡schoben werden, läßt siù der Fluo¡eszenzeffekt
unte¡d¡üd<en und so eine unhiltelbsre Bestimmung der natürliclen Linie¡breite von Reson¿nzlinien
vomehm€tr. E¡ste Messungen ûsd¡ diese¡ Methode ergebel für die Lebenszeit z des 129 keV.Niveaus
'o ¡."'' z:(I,4 1f'f) 'to-'*".

Die Methode, Ke¡nniveaus durdr Einstrahlung wird in zunehmende¡ Weise zur Bestimmung der
der eigenen 7-Liniel zur Fluoreszenz anzuregen, Lebenszeiten r kurzlebiger Kernzustände (z<I0-lo

/ sec) ve¡wendet,
1 In besondere¡ Fällen ist eine Fluo¡eszenzan¡egug durù Die Kernresonanzflaoteszenz von y-Strahlune ist

Einstrâhlutrg eiDes Quante¡kontinuw Eögliù: J, E, Dre- rrñ+a? r
¡en u, R.L.H¡cxor, phys. Rev.108,1280 t19571. - E. -"'-' no¡malen Bedingungen nur schwer zu beob-
Heyv¡¡o u. E. G, Fo"¡¡n, Phys. Rev. 106 99I t19571. adrten, weil die 7-Quanten bei ih¡er Emission und
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Absorption infolge Abgabe von Rücksioßimpuls an
die emittierenden und absorbierenden Kerne so
hohe Rüd<stoßenergieverluste erleiden, daß die
Emissions- und Absorptionslinien erheblich gegen-
einander versdroben we¡den und daher tlie Reso-
nanzbedingung verletzt wird. Es gibt im wesent"
lichen. drei Methoden, durdr Kompensation der
Rüdcstoßenergieverluste meßbare .We¡te für den
Wirkungsquerschnitt fü¡ die Kern¡esohanzfluores-
zenz zu etzielen:

l. Dopprnn-Verschiebung der Quantenenergien
durch medranisdre Bewegung der Kerne mit Hilfe
von Ultrazentrifugen 2.

2. Doprrsn-Verbreiterung der Emissions- und
Absorptionslinien durdr Temperaturerhöhung, um
die Überdedcung der beiden Linien zu ve¡besserns.

3. Doppr¡n-Verbreiterung oder Dopprrn-Ve¡sdrie-
bung der Quantenenergien durçh einen f¡ühe¡en
Emissions- oder Absorptionsprozeß, z, B. einen dem
7-Übergang vorangehenden p-übergang oder einen
Teilcheneinfang a.

In der vorliegenden Arbeit wi¡d über eine Me-
thode berichtet, bei der das Aufireten der Rüd<stoß.
energieverluste ve¡hindert wird und die Resonanz-
bedingung dahe¡.nicht ve¡letzt wird. Das besdl¡ie-
bene Ve¡fahren -dient zur unmittelbaren Messunq
der Lebenszeiten niedriger, angeregte¡ Ke¡nzustände.
Erste Messungen an dem I29 keV-übergang in lr1e1
werden mitgeteilt.

l. Grundlagen iler Meßmerhode

In einem frühe¡en Experiments wurde bei tiefen
Temperaturen im Gegensatz zur klassischen E¡war-
tung ein starker Anstieg der Kernresonanzabsorp-

2 P.B.Moor, Proc. Phys. Soc., Lond. A 64, ?6 [f951]. -P. B. MooN u. A. Sronnusrn, Proc. Phys. Soc., Lond, A 66,
585 [f953]. - W.G.D¡vBv u. P.B.Moor, Proc. Phys.
Soc., Lond.,4.66, 956 [1953]. - F. R. M¡rzc¡n, J. F¡ank-
lin Inst.26l,219 [f956]. - V.KNrrr, Proc. Phys. Soc.,
Lond. ,4. 70, 142 [1957].3 K. G. Marurons,.Ark. Fysik 6, 49 [953]. - F. R. M¡rzc¡n
u, V. B. Tooo, Phys. Rev. 95, 853 U9541. - F. R. M¡rz-
cen, Phys. Rev. 97, 1258 [955]; 98, 200 [f9551. - F. R.
Merzcen, J. Franklin Inst.26l,2I9 [1956]. - H. Scuorrrn,
Z. Phys. I44, 476 [I9s6].4 K. Irexovec, Proc. Phys. Soc., Lond, A 6?, 60f [1954], -F.R.Mrrzcrn, Repott at the Glasgow Conference 1954,
S.20I; Phys. Rev. I0l, 286 [1956]; r03, 983 [1956];lf0, I23 [1958]. - H. Scuoerun, Z. Phys. 144, 4?6 [f956].
- C.P.Sv¡nn u. F.R,Mzrzcrn, Phys. Rev. 108, 982
[f95?], - S.S.Hrru u. L.M¿$n-Scqürzu¡¡sr¡n. Phys.

R. L. MOSSB,q.UER

tion bei dem 129 keV-Niveau in lrlel beobachtr
Dieser Efiekt wurde mit Hilfe einer Theo¡ie vc
Len¡ 6 als Folge der Kristallbindung der Absorbe
und Präparatsubstanzen gedeutet und ist in Fes
körpern allgemein bei tiefen Temperaturen ur
weidrer 7-Strahlung zu erwarten.

Die Emission oder Absorption eines Quants durr
einen in einem Kristall gebundenen Kern Îührt ir
allgemeinen.zu einer Änderung des Sdrwingung
zustandes des Kristallgitters, das den Rüd<stol
impuls au{nimmt. Wegen der Quantelung der inn
ren Energie kann der Kristall die Rückstoßenerg:
nur in diskreten Beträgen aufnehmen, Mit abnel
mender Temperatur nimmt die Wahrsdreinlichke
für die Anregung der inneren Niveaus immer mel
ab, weshalb bei weidrer 7-strahlungT bei eine:
Teil der Quantenübergänge der K¡istall als Ganzt
den Rüd<stoßimpuls aufnimmt. Die hierbei emittie
ten bzw. absorbierten Quanten erleiden wegen dt
großen Masse des K¡istalles praktisdt keine Enerjir
verluste und e¡füllen ideal die Resonanzbedingun¡

Äbb. I zeigt die theoretischen Emissions. und Al
sorptionsspektren des I29 keV-überganges in Irll
bei eine¡ Temperatur von 88 oK.

Die Spektren enthalten je zweï Anteile:
l. Eine breite, die thermisdre Bewegung der ir

Kristallgitter gebundenen Atome widerspiegelnd
Verteilung. Die in den Bereich dieper ,,thermisdre
Linie" Jallenden Quantenübergänge sind mit eine
Anderung des Sdrwingungszustandes des K¡istal
gitters gekoppelt.

2. Eine außerordentlidr stärke Linie mit der n¿
tü¡lidren Linienbreite, die dle Quantenübergäng
enthält, bei denen kein Rüd<stoßene¡eievetlust aul
tritt, weil de¡ KristalL als Ganzes ãen Rücl<stof
impuls aufnimmt. Diese ,,rüd<stoßf¡eie Linie,, er

Rev. 108, 1644 tfÞ5?1. - L.Groozrus, phys. Rev. l0!
1014 [f958]. - V. Kree, Proc. Phys. Soc., Lond. ?J
194 [ì958]. - P. B. S¡r¡rq u. P. M. Enor, Phys. Rev. 11(
39'1, 1442 [f958]. - F. R. M¡rzcnn, C. P. Sw¡rw u. V. I
Rasuussrx, Phys. Rev. ll0, 906 [1958], - V. K. Rasvussu
F. R. Mrrzcrn u, C. P. Swenx, Phys. Iiev. ll0, f54 [195g'
- B.Donr¿r u. L.Horruenn, Z.Naturforsùg, 13ì, 2d
[1958]. - G. M. Guurrxs, Proc. Phys. Soc., Loná. ?i
337 [19s8].6 R. L- Mösseeurn, Z. Phys. 151, 124 [1958].3 W. E. Lerr rn., Phys. Rev.55, f90 t19391:t Bei ha¡ter ¡-Strahlung ist die Rü&;toßetrergie groß gege
die obe¡e Grenzenergie des Sdrwingungsspekt¡umJ ãe
Klistalles und es ist eine ungehinderte Aufnahme de¡ Rücl¡
stoßenergie in Fom von innerer Energie du¡dl den Ktistalnögliú.
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Nuclear Resonance and Fallout in 57Fe-decay
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probability for the excitation of the nuclear resonance with
synchrotron radiation when the energy is tuned away by
an amount needed for creation or annihilation of phonons.
The arrival of a very short ⇤,100 ps) synchrotron-radiation
flash triggers the emission process of an inelastically scat-
tered photon or of a conversion electron and subsequent
fluorescence radiation. In both cases the delay of this emis-
sion is on the order of the natural lifetime of the nuclear res-
onance. The discrimination of the delayed events, which
then signal the creation or annihilation of phonons from all
other scattering contributions, which are prompt in time,
is achieved by conventional timing methods. The energy
resolution in the phonon spectrum is determined by the en-
ergy bandwidth of the incident synchrotron radiation.
In the present experiment, the 14.4136-keV resonance

of the Mössbauer isotope 57Fe was employed because of
its large resonance cross section, the tolerable electronic
absorption in the materials used, and the convenient
lifetime. However, the method can be applied for any
nuclear resonance of nuclei in solids, liquids, or gases.
The experiments were performed at the undulator

beamline NE#3 at the 6.5-GeV KEK-AR synchrotron
radiation facility in Tsukuba, Japan [16]. A high-heat-
load monochromator, which consists of two symmetric
silicon (111) reflections in a nondispersive setting, and
a high-resolution, nested monochromator, as described
earlier [17], were employed to achieve the required
energy resolution. The high-resolution monochromator
uses asymmetric silicon (422) and symmetric silicon
(10 6 4) reflections. The synchrotron radiation incident on
the 57Fe-containing sample had an energy bandwidth of
6 meV at 14.4136 keV. An avalanche photodiode (APD)
with an active area of 2 cm2 was used to detect the
emitted fluorescence radiation [18]. The photon flux on
the sample was monitored with an ion chamber for proper
normalization of the data.
The time delay between the output pulses of the APD

detector and the bunch arrival signal that was derived
from the RF of the storage ring was measured. The
nonresonantly scattered radiation that appears promptly
with respect to the bunch arrival signal was eliminated by
counting in a time window of 30 to 600 ns after the arrival
of the synchrotron radiation flash. The detector noise in
this time window was less than 0.03 Hz. The energy of
the incident radiation was tuned by rotating the (10 6 4)
channel-cut crystal in steps of 1.55 meV. The samples
were mounted at a distance of �3 mm from the APD with
an inclination angle of �10± relative to the incident beam
providing good coverage of solid angle and illuminating a
large sample volume.
We observed phonon spectra from metallic foils of a-

iron and stainless steel Fe0.55Cr0.25Ni0.2 with thicknesses
of 10 and 30 mm, respectively. In addition, phonon
spectra were taken from powder samples of strontium iron
oxide, SrFeOx with x ≠ 2.5, 2.74, 2.86, 3.0 and sample
thicknesses of about 100 mm. The measurements were

conducted at room temperature (298 K), and the samples
were 95% enriched in 57Fe. The collection time for each
phonon spectrum ranged between 50 (stainless steel) and
100 min (SrFeOx).
The main features of the observed phonon spectra are

an elastic peak and sidebands at lower and higher energy
(inset of Fig. 1). The elastic peak dominates the spec-
trum, as expected for solids with reasonable probability
for recoilless absorption. Photons with less energy can
excite the nuclear resonance by annihilation of a phonon
(low energy sideband). The high energy sideband cor-
responds to phonon creation. Phonon annihilation is pro-
portional to the temperature-dependent phonon occupation
number, whereas the creation of phonons can also occur
spontaneously, which explains the observed asymmetry in
the spectra.
With the energy of the incident synchrotron radiation

shifted by E relative to the nuclear resonance, the flux of
delayed K-fluorescence photons emitted in the full solid
angle is given by

I⇤E⇧ ≠ I0rs
hKaK

1 1 a

p

2
GS⇤E⇧ , (1)

where I0 is the incident photon flux, s is the nuclear
resonant cross section, hK is the fluorescence yield, a, aK

are the total and partial internal conversion coefficients,
respectively, and G is the nuclear level width. The
effective area density of nuclei r also accounts for
absorption within the material. S⇤E⇧ is the absorption
probability per unit of energy. We will give it in terms of
the quantum states jx⇥ and the displacement operator r̂ of
the nuclear motion

S⇤E⇧ ≠

*
1

dE

X

n
j⌅xn⇤E⇧ je2ik?r̂jxi⇥j2

+

i

. (2)

FIG. 1. The absorption probability density S⇤E⇧, as given in
Eq. (2), is shown for a-iron (circles, dashed line) and stainless
steel (triangles, solid line). The elastic peak is removed as
described in the text. The inset shows the raw data.
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was achieved by use of high-resolution crystal optics for the incident beam. Extremely low background
levels were obtained via time discrimination of the nuclear fluorescent radiation.
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Knowledge of the dynamics of atomic motion has
been valuable in condensed matter physics [1]. It is
possible to obtain this information by measurement of
the phonon dispersion relation with slow neutrons or
monochromatic light, the latter with a very restricted
range in momentum transfer, along different directions of
a single crystalline sample [2,3]. The data can be used
to reconstruct the complete four-dimensional dispersion
surface once a specific model for the interatomic forces
has been chosen. The phonon density of states (DOS) is
then calculated from the reconstructed dispersion relation
[4]. In many cases of interest, single-crystal samples
are not available or it might be sufficient to know the
phonon DOS and not the complete dispersion relation.
This situation can be accommodated by collecting the
scattered neutrons over a large solid angle for those
elements with an appreciable cross section for inelastic
neutron scattering. The energy of the scattered neutrons
has to be determined, e.g., by time-of-flight analysis, and
the selected neutrons have to be discriminated against
electronic scattering contributions and detector noise. The
scattering of x rays was considered as an alternative
method to analyze excitations in solids [5]. The x rays
interact predominantly with the electrons in the solids, and
vibrational excitations are accompanied by low energy
electronic excitations.
In the present Letter, we use a recently reported method

[6] that permits derivation of the phonon DOS directly
from the measured data. We observed the absorption
of x rays from the 14.4136-keV nuclear resonance of
57Fe and the subsequent deexcitation by emission of K-
fluorescence radiation. Nuclear resonances that are low

in energy usually have a very narrow energy width,
4.66 neV for 57Fe. Considering inelastic scattering, we
may benefit from such a well-defined energy reference in
the lattice. This allows tuning the energy of the incident
x rays with respect to this resonance and not with respect
to the energy of the scattered particle, which then would
have to be determined. Furthermore, the deexcitation of
the nucleus by emission of a conversion electron followed
by fluorescence radiation takes place on a time scale of
the lifetime of the nuclear resonance, 141 ns for 57Fe.
If the nucleus is excited by pulsed synchrotron radiation,
the discrimination of nuclear resonant absorption from
the electronic contribution is very efficiently done by
counting only delayed fluorescence photons. Tuning the
energy of the incident synchrotron radiation with respect
to the nuclear resonance while monitoring the total yield
of the delayed fluorescence photons gives a direct measure
of the phonon DOS.
Nuclear resonances with low transition energies on the

order of 10 keV can be coherently excited by synchrotron
radiation with very high efficiency [7–9]. Besides the
precise determination of hyperfine interaction parame-
ters, these experiments permit determination of the Lamb-
Mössbauer factor [10,11]. The incoherent scattering from
a nuclear resonance was observed [12,13], but the signal
was too weak for further analysis. The probability of such
a process can be calculated from a self-correlation function
of the displacement of the nucleus. Similar self-correlation
functions were discussed earlier with respect to neutron
scattering [14] and with respect to effects on the line shape
of the nuclear resonance in Mössbauer transmission exper-
iments [15]. The quantitative analysis gives reasonable
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The sum is over those intermediate states that differ
by energies in the interval ⇤E, E 1 dE⇧ from the initial
state, and a thermal average is performed over the
initial state. k is the wave vector of the incident
radiation. S⇥E⌥ is normalized to unity. Its value in
the wings of the phonon spectrum is estimated by S �
⇥1 2 f⌥⌃2kBT , where f is the recoilless fraction and
kBT is the thermal energy. In the present experiment,
typical values were f ≠ 0.8, kBT ≠ 25 meV, rs ≠ 103,
GS ≠ 2 3 1028, and I0 ≠ 108 Hz. The estimated flux
of delayed fluorescence photons is then I ≠ 103 Hz.
Further corrections for absorption in the sample, detector
efficiency, and coverage of solid angle finally lead to the
observed counting rates of ⌅20 Hz.
In extracting S⇥E⌥ from the measured data, one faces

the problem of determining r for each sample. Diffi-
culties occur because of the sharp increase in attenuation
of the incident synchrotron radiation at the nuclear reso-
nance. To illustrate the situation, we give the electronic
and nuclear contributions to the attenuation length in
the case of iron metal. The nuclear part is 0.09 mm at
the elastic peak and takes an average value of 0.36 m in
the wings of the spectra. The electronic part is constantly
20 mm. Therefore, for thick samples as in the present
experiment, the effective number of nuclei that partici-
pate in the scattering is strongly decreased at the nuclear
resonance and the elastic peak in the data is reduced in
height by an essentially unknown factor. This normal-
ization problem is solved by using the general property
of S⇥E⌥ that its first moment equals the recoil energy
ER ≠ ⇥h̄2k2⌥⌃2M (1.94 meV for 57Fe) of the nucleus [19].
This relation permits a calculation of the integrated inelas-
tic spectrum A from the measured spectrum Im⇥E⌥,

A ≠
1

ER

Z
Im⇥E⌥E dE 2

1
ER

Z
R⇥E⌥E dE

Z
Im⇥E⌥ dE .

(3)
The second term in this expression accounts for the
slight correction that is necessary if the measured inten-
sity Im⇥E⌥, instead of I⇥E⌥ as given by Eq. (1), is used to
calculate the first moment. The resolution function R⇥E⌥
gives the energy distribution of the incident synchrotron
radiation and it is usually very close to being symmet-
ric. Therefore, the correction term becomes very small.
The phonon spectra are now easily normalized without
complicated calculations of r that would involve sample
geometry and composition. The pure phonon excitation
spectrum results after the central peak is removed by fit-
ting and subtraction. The normalized spectra of a-iron
and stainless steel after removal of the central peak are
shown in Fig. 1. The integrated spectra directly give the
recoilless fraction or Lamb-Mössbauer factor

f ≠ 1 2
1
A

Z
I 0m⇥E⌥ dE , (4)

where I 0m⇥E⌥ denotes the phonon spectrum after removal
of the central peak. In contrast to Mössbauer transmission
spectroscopy [20] and synchrotron radiation Mössbauer

spectroscopy [11,21], Eq. (4) does not require specific
knowledge about isotopic abundance, shape or thickness
of the sample, resonant cross section, or hyperfine in-
teractions. The Lamb-Mössbauer factor of a-iron was
determined to be f ≠ 0.805⇥3⌥. From the phonon DOS,
as shown in Fig. 2, we calculated the recoilless fraction
at zero temperature to be f0 ≠ 0.9241⇥7⌥ and a ratio of
f⌃f0 ≠ 0.871⇥4⌥. This is in agreement with earlier results
of f⌃f0 ≠ 0.866⇥3⌥ [11].
For further processing of the data, we assumed the

sample material to behave like a harmonic lattice with
well-defined phonon states. An expansion of S⇥E⌥ in terms
of n phonon contributions is then straightforward [22]

S⇥E⌥ ≠ fd⇥0⌥ 1 f
X̀

n≠1
Sn⇥E⌥ ,

S1⇥E⌥ ≠
ERD ⇥E⌥

E⇥1 2 e2bE⌥
, (5)

Sn⇥E⌥ ≠
1
n

Z
Sn21⇥E 2 e⌥S1⇥e⌥ de, n $ 2 .

The phonon DOSD ⇥E⌥ is proportional to the one-phonon
term in this expansion. Generally the ratio of the n-
and ⇥n 2 1⌥-phonon terms is given by 2⇥ln f⌥⌃n, which
results in a multiphonon contribution of less than 15%
for the present data. We deconvoluted the measured

FIG. 2. The phonon DOS of different materials are shown.
(a) a-iron (circles, dashed line) and stainless steel (triangles,
solid line). (b) SrFeOx with x ≠ 3 (triangles, solid line),
x ≠ 2.86 (diamonds, dashed line), x ≠ 2.74 (rectangles, dotted
line), and x ≠ 2.5 (circles, dashed-dotted line).

3834

VOLUME 74, NUMBER 19 P HY S I CA L REV I EW LE T T ER S 8 MAY 1995

Phonon Density of States Measured by Inelastic Nuclear Resonant Scattering

W. Sturhahn, T. S. Toellner, and E. E. Alp
Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439

X. Zhang and M. Ando
Photon Factory, National Laboratory for High Energy Physics, Oho 1-1, Tsukuba, Ibaraki 305, Japan

Y. Yoda and S. Kikuta
Department of Applied Physics, Faculty of Engineering, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113, Japan

M. Seto
Research Reactor Institute, Kyoto University, Sennan-gun, Osaka 590-04, Japan

C.W. Kimball and B. Dabrowski
Department of Physics, Northern Illinois University, De Kalb, Illinois 60115

(Received 16 December 1994)
The phonon density of states was measured by observing the nuclear resonant fluorescence of 57Fe

versus the energy of incident x rays from a synchrotron radiation beam. An energy resolution of 6 meV
was achieved by use of high-resolution crystal optics for the incident beam. Extremely low background
levels were obtained via time discrimination of the nuclear fluorescent radiation.

PACS numbers: 63.20.– e, 76.80.+y

Knowledge of the dynamics of atomic motion has
been valuable in condensed matter physics [1]. It is
possible to obtain this information by measurement of
the phonon dispersion relation with slow neutrons or
monochromatic light, the latter with a very restricted
range in momentum transfer, along different directions of
a single crystalline sample [2,3]. The data can be used
to reconstruct the complete four-dimensional dispersion
surface once a specific model for the interatomic forces
has been chosen. The phonon density of states (DOS) is
then calculated from the reconstructed dispersion relation
[4]. In many cases of interest, single-crystal samples
are not available or it might be sufficient to know the
phonon DOS and not the complete dispersion relation.
This situation can be accommodated by collecting the
scattered neutrons over a large solid angle for those
elements with an appreciable cross section for inelastic
neutron scattering. The energy of the scattered neutrons
has to be determined, e.g., by time-of-flight analysis, and
the selected neutrons have to be discriminated against
electronic scattering contributions and detector noise. The
scattering of x rays was considered as an alternative
method to analyze excitations in solids [5]. The x rays
interact predominantly with the electrons in the solids, and
vibrational excitations are accompanied by low energy
electronic excitations.
In the present Letter, we use a recently reported method

[6] that permits derivation of the phonon DOS directly
from the measured data. We observed the absorption
of x rays from the 14.4136-keV nuclear resonance of
57Fe and the subsequent deexcitation by emission of K-
fluorescence radiation. Nuclear resonances that are low

in energy usually have a very narrow energy width,
4.66 neV for 57Fe. Considering inelastic scattering, we
may benefit from such a well-defined energy reference in
the lattice. This allows tuning the energy of the incident
x rays with respect to this resonance and not with respect
to the energy of the scattered particle, which then would
have to be determined. Furthermore, the deexcitation of
the nucleus by emission of a conversion electron followed
by fluorescence radiation takes place on a time scale of
the lifetime of the nuclear resonance, 141 ns for 57Fe.
If the nucleus is excited by pulsed synchrotron radiation,
the discrimination of nuclear resonant absorption from
the electronic contribution is very efficiently done by
counting only delayed fluorescence photons. Tuning the
energy of the incident synchrotron radiation with respect
to the nuclear resonance while monitoring the total yield
of the delayed fluorescence photons gives a direct measure
of the phonon DOS.
Nuclear resonances with low transition energies on the

order of 10 keV can be coherently excited by synchrotron
radiation with very high efficiency [7–9]. Besides the
precise determination of hyperfine interaction parame-
ters, these experiments permit determination of the Lamb-
Mössbauer factor [10,11]. The incoherent scattering from
a nuclear resonance was observed [12,13], but the signal
was too weak for further analysis. The probability of such
a process can be calculated from a self-correlation function
of the displacement of the nucleus. Similar self-correlation
functions were discussed earlier with respect to neutron
scattering [14] and with respect to effects on the line shape
of the nuclear resonance in Mössbauer transmission exper-
iments [15]. The quantitative analysis gives reasonable

3832 0031-9007�95�74(19)�3832(4)$06.00 © 1995 The American Physical Society

Sr2Fe2O5

Sr2Fe2O5.5

Sr2Fe2O5.75

Sr2Fe2O6

  stainless steel, 304

bcc-iron

Cubic perovskite

Tetragonal perovskite

Orthorombic perovskite

Brownmillerite

FIG. 1. Proposed oxygen-vacancy ordering schemes for Sr
!
Fe

!
O

!!"#
(n"2, 4, and 8). (a) Sr

$
Fe

$
O

%
brownmillerite I-centered unit cell, (b) Sr

&
Fe

&
O

##
C-centered unit cell proposed by Takano (13), (c) Sr

'
Fe

'
O

$!
I-centered unit cell proposed by Takano, (d) Sr

&
Fe

&
O

##
B-centered unit cell proposed by

Gibb (28), (e) Sr
&
Fe

&
O

##
new C-centered unit cell, and (f) Sr

'
Fe

'
O

$!
new I-centered unit cell. The open circles, "lled circles, small "lled circles, and open

squares indicate O$" anions, vacancies, Fe cations, and Sr$" cations, respectively.

192 HODGES ET AL.



VOLUME 79, NUMBER 5 P HY S I CA L REV I EW LE T T ER S 4 AUGUST 1997

Phonons in Nanocrystalline 57Fe

B. Fultz,1 C. C. Ahn,1 E. E. Alp,2 W. Sturhahn,2 and T. S. Toellner2
1Division of Engineering and Applied Science, 138-78, California Institute of Technology, Pasadena, California 91125

2Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439
(Received 13 March 1997)

We measured the phonon density of states (DOS) of nanocrystalline Fe by resonant inelastic nuclear
g-ray scattering. The nanophase material shows large distortions in its phonon DOS. We attribute
the high energy distortion to lifetime broadening. A damped harmonic oscillator model for the
phonons provides a low quality factor, Qu, averaging about 5, but the longitudinal modes may have
been broadened most. The nanocrystalline Fe also shows an enhancement in its phonon DOS at
energies below 15 meV. The difference in vibrational entropy of the bulk and nanocrystalline Fe
was small, owing to competing changes in the nanocrystalline phonon DOS at low and high energies.
[S0031-9007(97)03708-3]

PACS numbers: 76.80.+y, 61.72.–y, 63.20.–e

Over the past decade there has been much interest in
nanocrystalline materials, generally defined as materials
composed of crystallites smaller than 100 nm. Unusual
mechanical properties and soft magnetic properties were
topics of numerous investigations on metallic nanocrys-
tals [1]. Very recently, neutron inelastic scattering mea-
surements have shown some differences in the phonon
density of states (DOS) of nanocrystalline and bulk mate-
rials [2–6]. One such effect was an enhancement of the
phonon DOS at low energies [3–7]. A broadening of the
peak from the longitudinal modes in the phonon DOS was
also observed and attributed to the lifetime broadening of
phonons in small crystals [5,6]. Unfortunately, it was not
possible to measure accurately the shape of the longitudi-
nal peak, owing to statistical and background limitations
of the neutron inelastic scattering technique.
In this Letter we show how a recently developed experi-

mental technique, resonant inelastic nuclear g-ray scatter-
ing [8,9], provides new information on the shape of the
phonon DOS of nanocrystalline Fe. In particular, the ex-
cellent signal-to-noise ratio of the data makes it possible
to examine quantitatively the high energy tail of the
phonon DOS in small samples. In our resonant inelas-
tic nuclear g-ray scattering measurements, 14.41 keV g
rays were directed onto a foil specimen, and 6.4 keV con-
version x-ray radiations from the specimen were detected.
This scattering is incoherent, so the data provide infor-
mation on the velocity-velocity correlation function of in-
dividual 57Fe nuclei. The experiments were performed
at the undulator beamline 3-ID at the Advanced Photon
Source. A high-heat-load monochromator, which consists
of two symmetric silicon (1 1 1) reflections in a nondis-
persive setting, and a high-resolution, nested monochro-
mator, as described previously [10], were used to provide
the 14.413 keV radiation onto the specimen. The high-
resolution monochromator operates with asymmetric sili-
con (4 2 2) and symmetric silicon (10 6 4) reflections and
produces a constant energy bandwidth of 5.5 meV over

the tuning range. The energy of the incident radiation
was tuned by rotating the (10 6 4) channel-cut crystal in
steps of 2 meV. The photons were incident on the sample
at 5 3 109 Hz in a 0.5 3 2 mm2 beam. An avalanche
photo diode with an active area of 2 cm2 was mounted
3 mm above the specimen for the detection of the emitted
Fe-K fluorescence radiation. To eliminate the unwanted
electronic contribution to the fluorescence, counting began
30 ns after the arrival of the synchrotron radiation flash.
The detector noise was less than 0.03 Hz. All measure-
ments were performed at room temperature. A foil of
cold-rolled bulk 57Fe was used for calibration and com-
parison with the nanocrystalline material.
The sample of nanocrystalline 57Fe was prepared by the

technique of ballistic consolidation [11]. About 34 mg of
57Fe (95% isotopically enriched) was evaporated by electri-
cal resistance heating into a gas of N2 containing 10 vol%
H2 at a pressure of 3.5 Torr. Some of the 57Fe crystal-
lites that condensed in the flowing gas were entrained as
aerosol particles in a gas stream that was drawn through
a nozzle of 1 cm diameter. Particle velocities of 20 mys
were achieved by establishing a pressure of 1000 mT on
the downstream side of the nozzle. This gas was directed
against a thin kapton substrate, where a film of about 4 mg
of 57Fe was deposited.
An x-ray diffraction pattern from the nanocrystalline

57Fe film is shown in Fig. 1(a). The main diffraction
peaks are indexed as bcc Fe. We determined the lattice
parameter of the bcc phase to be 2.8679 6 0.0005 Å,
which is close to the lattice parameter of 2.8664 Å
of pure Fe. Also visible are broad diffraction features
attributable to a thin oxide layer around the surfaces of the
Fe crystallites. Although the oxide may be amorphous,
after six months of exposure to air the sample oxidation
was more extensive (although not complete), and the
oxide was identified as either nanocrystalline maghemite
or magnetite. We estimated the particle sizes and strain
distribution in the bcc phase from the widths of the (110)
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peaks were modeled as a sum of two Gaussian peaks,
and subtracted from the spectrum. The resulting inelas-
tic scattering was treated with the conventional multi-
phonon expansion [16,17]. A calculation of the phonon
DOS of bcc Fe, using the Born–von Kármán model of
lattice dynamics with force constants obtained from ex-
perimental phonon dispersion curves [18], is shown at the
top of Fig. 4(a), labeled “Fe DOS.” From this phonon
DOS curve it is straightforward to calculate the multi-
phonon scattering at 300 K with a momentum transfer
vector Q of the 14.41 keV g rays s7.3 Å21d. For this
Q, T, and DOS of bcc 57Fe, the multiphonon scattering
(sum of 2-, 3-, 4-, 5-phonon scatterings) is in a fixed
ratio to the total inelastic scattering (sum of 1, 2, 3, 4,
5-phonon scatterings). After convolving these calculated
scattering functions SsQ, Ed with a Gaussian resolution
function of FWHM ≠ 5.0 meV, the total inelastic scat-
tering was scaled in amplitude to fit the experimental in-
elastic scattering data. The multiphonon scattering was
scaled by the same factor, and subtracted from the experi-
mental data. The result is the experimental one-phonon
scattering. This one-phonon scattering can be converted
into a phonon DOS by multiplying by the thermal correc-
tion factor fsEd:

fsEd ≠ Ef1 2 exps2EykT dg . (1)
The only difficulty with the procedure just described

is knowing the phonon DOS to use for calculating the
multiphonon scattering. While this is not a problem for
bulk bcc Fe, the phonon DOS is not known a priori for
the nanocrystalline material. In one approach we used an
iterative procedure. We started by assuming the multi-
phonon scattering of bcc Fe, and extracted a phonon DOS
curve from the experimental data. This first generation
DOS curve was then used to calculate the multiphonon
scattering for the second iteration. There was essentially
no difference for the phonon DOS obtained in the first and

FIG. 4. (a) Top: phonon DOS of bulk bcc Fe, calculated with
force constants from inelastic neutron scattering [18]. Bottom:
crosses are phonon DOS curves extracted from experimental
data of Fig. 4. Solid curves are calculated as described in text.
(b) Enlargement of low energy part of the experimental phonon
DOS curves of Fig. 4(a).

second iterations for the bulk Fe sample, and relatively
little change for the phonon DOS from the nanocrystalline
material. The method of Sturhahn et al. [8] was also
used to obtain phonon DOS curves, and results of the two
methods were essentially identical.
The experimental phonon DOS curves obtained after

the second iteration are shown in Fig. 4(a) as “Bulk
Exp” and “Nano Exp.” They are overlaid with two
calculated curves. The curve labeled “Bulk Calc” is the
phonon DOS from bcc Fe [labeled Fe DOS in Fig. 4(a)]
after convolution with a Gaussian instrument function of
5.0 meV resolution. The fit to the experimental data is
excellent, even though the only adjustable parameter was
the normalization to unit area.
The curve labeled “Nano Calc” was also obtained from

the phonon DOS of bcc Fe, but with the assumption of
lifetime broadening of the phonons. Each intensity at
energy E0 of the curve Fe DOS was convoluted with the
characteristic spectrum of a damped harmonic oscillator:

DE 0sEd ≠
1

pQuE0
1

sE0yE 2 EyE0d2 1 1yQ2
u

(2)

The only free parameter in fitting the phonon DOS
from the nanocrystalline material was the value of the
quality factor of the oscillator Qu, which was assumed
to be the same for all phonons. The curve Nano Calc
in Fig. 4(a) was obtained with a value of Qu ≠ 5,
after convolution with the same instrument resolution
function used for the bulk Fe data (Gaussian function
of FWHM ≠ 5.0 meV). Many features of the phonon
DOS from the nanocrystalline Fe are represented well by
this assumption of a damped harmonic oscillator. The
shape of the high energy tail above the longitudinal peak
is modeled particularly well. It is possible, however, to
obtain better agreement with the kink in the experimental
data at 30 meV by assuming that the transverse modes are
broadened less than the longitudinal modes.
The lifetime broadening can be understood by consider-

ing the number of oscillation cycles available to a phonon
wave packet as it traverses a small crystallite. In a 10 nm
crystallite, half of the atoms are within about 1 nm from
the surface. The present value of Qu ≠ 5 is much lower
than from nanocrystalline material in consolidated form
[5,6], however. Previous results from consolidated fcc
nanocrystals of 10 nm indicate a Qu in the range of 15–
30 [6]. We believe our low value of Qu originates with
the open nature of the microstructure shown in Fig. 2, and
perhaps from effects of surface oxide. We hypothesize
that the interfaces and free surfaces in our material may be
especially effective in damping crystal vibrations, at least
those of longitudinal polarization. We doubt that damping
could be caused by interstitial contamination in the metal
by C or N atoms; the small change in x-ray lattice parame-
ter compared to that of bulk bcc Fe indicates a concentra-
tion of C or N of less than 0.2 at. % [19]. It might be
argued that some damping could originate with internal
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Phonon excitation probability
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Multi-phonon decomposition
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Lipkin’s sum rules related to phonon excitation probability

H. Lipkin, Phys. Rev. B, 52 (1995) 10073
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Detailed Balance

I(!E) = I(E)e!E /kT

T = E(eV )
kB ln I(E) I(!E)[ ]

(22.6 meV, 2762)

(-22.6 meV, 1158)
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Detailed Balance

I(!E) = I(E)e!E /kT

kB = 8.6173"10!2meV /K
E = 22.6 meV
I(!E) =1158,   I(E) = 2762

T = E(eV )
kB ln I(E) I(!E)[ ]

= 297.03K
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Temperature dependence of  phonon excitation probability

V-1.1 A.I. Chumakov, W. Sturhahn / Inelastic nuclear resonance scattering 793

Figure 6. Energy spectra of inelastic nuclear absorption of synchrotron radiation by α-57Fe at various
temperatures. Solid lines are calculations according to eqs. (5.1)–(5.3), based on the results of neutron
scattering at room temperature [15] and convoluted with the instrumental function of the monochromator.

From [14].

factor vanishes, i.e., there are no phonons excited in the lattice. Therefore, an incident
X-ray quantum cannot gain energy from lattice vibrations. However, it may still lose
energy by creating new phonons.

At low temperatures, besides vanishing in the phonon-annihilation part, the energy
spectrum of inelastic absorption also vanishes at the low energy transfer region in the

Chumakov, et al, Phys. Rev. B 54 (1996) 9596.

T= 5 K

T= 297 K
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KS : adiabatic bulk modulus
G :  shear modulus
VP : compression wave velocity
VS : shear wave velocity
VD : Debye sound velocity
Ρ   : density

Measurement of vD, Debye sound velocity allows to 
resolve longitudinal and shear sound velocity, 
provided that bulk modulus and density, is 
independently and simultaneously measured by x-
ray diffraction.  
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4. THERMODYNAMICS AND DENSITY OF STATES

4.1 Thermodynamic functions

In the derivation of the Bose–Einstein distribution given in Appendix B, we derive the equation for the
partition function of a harmonic oscillator of angular frequency !, Z:

Z = 1
1 − exp(−"!!)

(4.1)

The free energy is related to Z via

F = −kBT lnZ (4.2)

and thus we obtain

! F = kBT
∑

k,#

ln[2 sinh(!!k,#/2kBT )] (4.3)

Other thermodynamic quantities, such as the heat capacity, can be obtained by appropriate
differentiation of F (e.g. the heat capacity is equal to −T !2F/!T 2).

4.2 Density of states

Given that the thermodynamic functions only depend on the frequency of the normal mode and not
directly on its wave vector or mode eigenvector, one way to perform the summations over all modes
and wave vectors is to simply generate a list of frequency values for a grid of wave vectors from one’s
favourite lattice dynamics program.10 If the grid is sufficiently fine, it is possible to then generate a
histogram of frequency values, and such a histogram is called the density of states, g(!). Formally we
note that the density of states is defined such that the number of modes with angular frequency in the
range ! → ! + d! is equal to g(!)d!. Then the summations in the thermodynamic functions can be
replaced by appropriate integrals. For example, the energy can be written as

E =
∑

k,#

(〈
n(!k,#)

〉
+ 1

2

)
!!k,# ≡

∫ (
⟨n(!)⟩ + 1

2

)
!! g(!) d!. (4.4)

From a computational perspective, this is not particularly interesting. However, in the limit of
low-frequency, the density of states only contains contributions from the acoustic modes, and in
this case it is possible to obtain a mathematical equation for g(!). Moreover, for thermodynamic
applications, the only modes that will be excited at low temperatures according to the Bose–Einstein
equation are the lower-frequency acoustic modes, and an exact expression for g(!) for these modes will
enable thermodynamic properties to be calculated exactly. We make the (unnecessary but pedagogical)
approximation that the frequencies of the acoustic modes follow a simple linear dependence on wave
vector, ! = ck, where c is an average sound velocity. Because this is a linear problem, we can compute
g(!) from the distribution of wave vector values, g(k). Writing the volume of the crystal as V , and
defined with N unit cells and hence N wave vectors, the number of wave vectors per unit volume of
reciprocal space is equal to V/(2$)3. Thus in a spherical shell of radius k and thickness dk, the number
of wave vectors will be equal to

g(k) dk = V

(2$)3
4$k2 dk. (4.5)

10 Some care is needed in setting up this grid. For example, if it includes special points in reciprocal space, these may need to
be weighted slightly differently than general points if the griding is performed over the a symmetrically-unique segment of the
Brillouin zone. It may sometimes be useful to use a random set of wave vectors rather than wave vectors across a uniform grid.

Number of wave vectors in a spherical shell 
of radius k per unit volume of reciprocal space.  
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Substituting for k = !/c and dk = d!/c, we obtain

g(!) = 3V

2"2c3
!2 (4.6)

where the factor of 3 accounts for the number of acoustic modes for each wave vector. The relationship
g(!) ∝ !2 is a general result that is seen in calculations or measurements on any ordered crystalline
materials. If one sees departures from this relationship, the system will contain excitations that are not
described by simple harmonic travelling waves. Typically this might be found in disordered materials.11

Increasingly we are seeing measurements of the density of states using neutron or x-ray scattering12

being used as a probe of variations of phonon frequencies with parameters such as temperature,
particularly when single crystals for full measurements of dispersion curves are not available.

4.3 Heat capacity at low temperatures

With some manipulation, it can be shown that equation 4.4 for the energy in the limit of low temperature
for the form of g(!) given by equation 4.6 can be solved to give

E = V "2(kBT )4

10(c!)3
(4.7)

(See, for example, Chapter 9 of reference 2.) It thus follows that the heat capacity has the form

cV = 2V "2kB

5(c!/kB)3
T 3 = N

12"4kB

5

(
T

#D

)3

; #D = c!
kB

(
6"2N

V

)1/3

(4.8)

We see that the heat capacity at low temperature will vary as T 3, a result that has been confirmed for
many crystalline materials. We have written the heat capacity in terms of the material constant #D, which
is known as the Debye temperature.

This result is important in three regards. First, as noted above, it is seen to be obeyed by a large
number of crystalline materials, and this analysis enables to understand why. Second, in metals there is
an important contribution to the heat capacity from the electrons that varies linearly with temperature at
low temperature, and having an expression for the phonon contribution to the heat capacity enables the
electronic component to be extracted. Third, some disordered materials – particularly many amorphous
materials – are found to have a heat capacity that varies more closely to linearly with temperature than
the T 3 law; with the theoretical support for the T 3 law we immediately understand that the departure
from this law implies the need for a deeper understanding of the thermodynamics of amorphous
materials.

5. EXPERIMENTAL STUDIES

5.1 Classical theory of inelastic neutron and x-ray scattering

In this section we discuss the results from experimental studies of lattice dynamics of a number of
different systems. Traditionally the key technique has been inelastic neutron scattering. Before we
present representative results, we will sketch a classical theory of inelastic scattering, a theory that
will apply also to inelastic scattering of x-rays.

We start by considering the process of elastic scattering radiation from an assembly of atoms, where
the scattered beam has the same wavelength/energy as the incident beam.13 Figure 6 shows the path of

11 It is a simple generalisation of this formalism to show that for d-dimensional systems g(!) ∝ !d−1.
12 Technically the experimental measurements will be weighted by the scattering power of each atoms.
13 Actually we do not need to assume that the wavelength doesn’t change through the scattering process, and the following
equations can easily be rewritten allowing for a change of wavelength.

Phonon  density of states has a quadratic dependence on 
frequency, and inversely proportional to the cube of 
sound velocity.  
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Let’s assume that the acoustic modes have a 
linear relationship between frequency and 
wave vector: 

, where C is average sound velocity ω = ck

Maximum frequency cut off is at Debye energy:
e.g. for Cu, this frequency is 240 cm-1 (~ 30 meV). 
Considering 1 meV = 11.605 K=8.065 cm-1, this 
corresponds to 348 K, which is close to 344 K. 
For Fe, the measured cut-off value is ~ 39.5 meV,
which corresponds to 458 K, very close to reported 
460 K. 
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and yield insight into the mechanisms of thermal conductivity reduction.
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The loosely bound guests affect the characteristics of 
the vibrations, and change the thermal conductivity

Many elements in modern thermolelectric materials 
include Fe, rare-earth atoms like Eu, Sm, Dy, as 
well as Sb, and Te. These are all proper Mössbauer 
resonances we can exploit, and we do..
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We use nuclear resonance inelastic x-ray scattering (NRIXS), a relatively new, synchrotron-based, isotope-
specific technique in combination with a more traditional one, Raman spectroscopy, to probe the vibrational
dynamics of the host frameworks in two Zintl clathrates: K8Zn4Sn42 (KZS) and Ba8Ga16Sn30 (BGS). From the
normalized Sn vibrational density of states obtained from NRIXS, we calculate the stiffness, a mean force constant
of the Sn environment, the resilience, a compact way of expressing the temperature dependence of the Sn mean
square displacement, and several thermodynamic properties. The stiffness and the resilience are approximately
7% lower in KZS, reflecting its larger unit cell compared to BGS. We emphasize the complementariness between
NRIXS and Raman spectroscopy and establish a series of benchmarks for a more quantitative evaluation of the
Raman spectra for the numerous clathrates that are still not suitable for NRIXS studies.
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I. INTRODUCTION

Clathrates are compounds with beautiful structures consist-
ing of (guest) atoms trapped inside (host) polyhedral cages [1]
known for their thermoelectric [2], mechanical [3], magnetic
[4], superconducting [5], and photovoltaic [6] properties.
The close relationship between structure and properties is of
scientific and technological importance [7,8]. Among other
applications, clathrates are promising candidates in the search
for new materials fitting the “phonon glass, electron crystal”
concept, in which the phonon free paths are as short as possible
while electron mean free paths are as long as possible [9]. Early
studies associated the low thermal conductivities in a number
of materials with the presence of loose, “rattling” atoms
[10,11], hence the initial interest in probing the dynamics of
the guest atoms in clathrates with a variety of techniques such
as diffraction [12], nuclear resonant inelastic x-ray scattering
[13], and inelastic neutron scattering [14]. On the other hand,
the role played by the host framework occupancy and dynamics
on the behavior of the guest atoms and, ultimately, on the
thermal conductivity has been demonstrated both theoretically
[15,16] and experimentally [17,18].

Improvement of thermoelectric materials in general re-
quires a detailed knowledge of all the factors influencing
their properties [19]. Hence, for clathrates it is of interest to
probe the atomic dynamics of the host framework separately
from that of the guest atoms and to extract mechanical and
thermodynamic properties associated with it. Phonons, which
are also important in understanding the superconducting mech-
anism [8,20], are usually studied with Raman spectroscopy
[8,21,22] and inelastic neutron scattering (INS) [17,18,23].
With these techniques, however, is sometimes difficult to
separate the contributions from the guest and the host atoms
to the measured signal. (This separation can be accomplished,
for example, by using isotope labeling in Raman [8] or the
complementary techniques INS and inelastic x-ray scattering

*leu@aps.anl.gov

[23].) Nuclear resonance inelastic x-ray scattering [24,25]
(NRIXS; other names used for this technique include nuclear
inelastic scattering [13], nuclear resonance vibrational spec-
troscopy [26], and others) circumvents this difficulty due to its
ultimate site selectiveness: it is an isotope-specific technique,
with only the targeted atom(s) contributing to the measured
spectrum. While 57Fe is by far the most studied isotope,
due to the importance of iron in biology, geophysics, and
condensed matter physics, several other isotopes are suitable
for NRIXS, such as 119Sn, 151Eu, 81Kr, 149Sm, 161Dy, and
121Sb. NRIXS has been used previously in investigations on
Zintl and hydrate clathrates, in which the guest atoms—Eu
[13] and Kr [27,28], respectively—were targeted. On the other
hand, NRIXS studies on filled skutterudites (a related class of
thermoelectric materials) helped elucidate the contribution of
the host framework, in addition to that of the filler, to the
lattice thermal conductivity in a series of experiments probing
different (Fe, Sb) sites [29,30]. To the best of our knowledge,
so far NRIXS has not been applied to probe the dynamics of
the host framework in clathrates.

Here, we use Sn-based NRIXS to investigate the host frame-
work dynamics in two promising thermoelectric materials:
K8Zn4Sn42 (KZS) and Ba8Ga16Sn30 (BGS). KZS [31] (Fig. 1)
is a type-I clathrate [2,32] (i.e., it consists of pentagonal
dodecahedra and tetrakaidecahedra alternating in a 1:3 ratio)
while BGS [18,33] (Fig. 2) is of type VIII (i.e., it contains
only pentagonal dodecahedra; however, BGS adopts the type-I
clathrate structure in the high-temperature modification [35]).
Both have cubic unit cells, with a = 12.071 Å and space group
Pm-3n for KZS [31], and a = 11.572 Å and space group
I -43m for BGS [33,34].

We carried out parallel Raman measurements that revealed
a remarkable complementariness between the two techniques.
Differently from Raman spectroscopy however, NRIXS is an
outstandingly quantitative technique, allowing us to extract the
overall stiffness of the host framework and other parameters,
and to establish a series of benchmarks in a Raman spectrum
that may be useful for those compounds that are not suitable
for NRIXS measurements.
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FIG. 1. (Color online) Structure of type-I clathrate K8Zn4Sn42.
Color scheme: gray = K, yellow = Zn/Sn, red = Sn. One
small (pentagonal dodecahedron) and large (tetrakaidecahedron) host
framework cage are highlighted in green and blue, respectively.

II. MATERIALS AND METHODS

A. Sample preparation

Single crystals of KZS and BGS were grown by a self-flux
method using tin metal [33]. High-purity K, Zn powder, and
Sn in the ratio of 4:2:63 were placed in a tantalum ampoule,
which was sealed and heated with a rate of 1 K/min to 650 ◦C.
The ampoule was held at this temperature for 1 h, followed
by cooling to 200 ◦C with a rate of 0.1 K/min and to room
temperature with a rate of 1 K/min. A carbon coated quartz
tube containing high-purity Ba, Ga, and Sn mixed in an atomic
ratio of 8:16:80 was evacuated and sealed under vacuum.
The tube was placed in a computer-controlled furnace and
was heated to 1100 ◦C over 12 h. The tube was kept at this
temperature for 5 h and was subsequently cooled to room

FIG. 2. (Color online) Structure of type-VIII clathrate
Ba8Ga16Sn30. Color scheme: gray = Ba, red = Sn/Ga. One
host framework cage (pentagonal dodecahedron) is highlighted in
blue.

temperature in two steps: fast cooled to 500 ◦C and kept at
this temperature for 18 h, then slowly cooled down to room
temperature at a rate of 5 ◦C/h. Further details about sample
preparation and characterization can be found in Refs. [31,34].

B. Raman experiment

The measurements were performed at the Center for
Nanoscale Materials, Argonne National Laboratory. Spectra
were recorded at room temperature using 633-nm excitation
from a helium-neon laser with 0.5-mW incident power and a
Raman microscope (inVia Reflex, Renishaw, Inc.). Scattered
light was collected through a 50X objective (Leica, NA =
0.75). The spectra are the result of averaging thirty 15-second
integrations for KZS and ten 30-second integrations for BGS.

C. NRIXS experiment

NRIXS measurements were carried out at beamline 30-ID
of the Advanced Photon Source (APS), Argonne National
Laboratory. The incident monochromatic 23.88-keV x rays
impinging on the sample had a flux of ∼1.7 × 109 Hz.
The experimental resolution, obtained from a cryogenically-
cooled, six-bounce high-resolution monochromator [36] was
1.3 meV (10.4 cm−1). Energy scans, done at room temperature,
covered the range from −40 to 70 meV with a 0.25 meV step.
Multiple scans were added to obtain the data shown in Figs. S2
and S3 (panel A), Ref. [34], for a total collection time of ∼1.5 h
for KZS and ∼4.5 h for BGS. Both samples contained naturally
abundant Sn.

This work represents the first NRIXS project conducted
at the 30-ID beamline, otherwise hosting the HERIX instru-
ment, dedicated to the high-energy resolution inelastic x-ray
scattering technique. The closeness between the operating
energy for HERIX (23.724 keV) and for Sn-based NRIXS
(23.88 keV) allows for the use of the same high-resolution
monochromator for the two techniques. At the APS, 119Sn
NRIXS can be performed at beamline 3-ID as well [37,38]
using a four-bounce, “nested” high-resolution monochromator
[39].

The measured NRIXS signal (Figs. S2 and S3, panel A,
Ref. [34]) consists of a central peak due to the recoilless
excitation of the 119Sn nucleus at E0 = 23.88 keV and a series
of sidebands of frequency ν̄ shifted with respect to E0 by hcν̄.
The raw data was processed using Lipkin’s first momentum
sum rule [40] to produce a normalized excitation probability
(Figs. S2 and S3, panel B, Ref. [34]). Program PHOENIX [41]
was used to find the partial density of states D(E) (Figs. S2 and
S3, panel C, Ref. [34]) from the one-phonon contribution to
the excitation probability (Figs. S2 and S3, panel B, Ref. [34]).
Further details about NRIXS experiments in general and data
analysis can be found elsewhere [24–26].

III. RESULTS AND DISCUSSION

The Raman spectra of KZS and BGS are shown in Fig. 3.
The main bands are listed in Table I. Similar to previous
experimental [16,21,22,42–44] and theoretical [16] Raman
studies on Sn-containing clathrates, two main regions can be
distinguished in the KZS and BGS spectra: around 60–80 cm−1

and above 150 cm−1. Traditionally, the modes below 40 cm−1
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which was sealed and heated with a rate of 1 K/min to 650 ◦C.
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by cooling to 200 ◦C with a rate of 0.1 K/min and to room
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temperature in two steps: fast cooled to 500 ◦C and kept at
this temperature for 18 h, then slowly cooled down to room
temperature at a rate of 5 ◦C/h. Further details about sample
preparation and characterization can be found in Refs. [31,34].

B. Raman experiment

The measurements were performed at the Center for
Nanoscale Materials, Argonne National Laboratory. Spectra
were recorded at room temperature using 633-nm excitation
from a helium-neon laser with 0.5-mW incident power and a
Raman microscope (inVia Reflex, Renishaw, Inc.). Scattered
light was collected through a 50X objective (Leica, NA =
0.75). The spectra are the result of averaging thirty 15-second
integrations for KZS and ten 30-second integrations for BGS.

C. NRIXS experiment

NRIXS measurements were carried out at beamline 30-ID
of the Advanced Photon Source (APS), Argonne National
Laboratory. The incident monochromatic 23.88-keV x rays
impinging on the sample had a flux of ∼1.7 × 109 Hz.
The experimental resolution, obtained from a cryogenically-
cooled, six-bounce high-resolution monochromator [36] was
1.3 meV (10.4 cm−1). Energy scans, done at room temperature,
covered the range from −40 to 70 meV with a 0.25 meV step.
Multiple scans were added to obtain the data shown in Figs. S2
and S3 (panel A), Ref. [34], for a total collection time of ∼1.5 h
for KZS and ∼4.5 h for BGS. Both samples contained naturally
abundant Sn.

This work represents the first NRIXS project conducted
at the 30-ID beamline, otherwise hosting the HERIX instru-
ment, dedicated to the high-energy resolution inelastic x-ray
scattering technique. The closeness between the operating
energy for HERIX (23.724 keV) and for Sn-based NRIXS
(23.88 keV) allows for the use of the same high-resolution
monochromator for the two techniques. At the APS, 119Sn
NRIXS can be performed at beamline 3-ID as well [37,38]
using a four-bounce, “nested” high-resolution monochromator
[39].

The measured NRIXS signal (Figs. S2 and S3, panel A,
Ref. [34]) consists of a central peak due to the recoilless
excitation of the 119Sn nucleus at E0 = 23.88 keV and a series
of sidebands of frequency ν̄ shifted with respect to E0 by hcν̄.
The raw data was processed using Lipkin’s first momentum
sum rule [40] to produce a normalized excitation probability
(Figs. S2 and S3, panel B, Ref. [34]). Program PHOENIX [41]
was used to find the partial density of states D(E) (Figs. S2 and
S3, panel C, Ref. [34]) from the one-phonon contribution to
the excitation probability (Figs. S2 and S3, panel B, Ref. [34]).
Further details about NRIXS experiments in general and data
analysis can be found elsewhere [24–26].

III. RESULTS AND DISCUSSION

The Raman spectra of KZS and BGS are shown in Fig. 3.
The main bands are listed in Table I. Similar to previous
experimental [16,21,22,42–44] and theoretical [16] Raman
studies on Sn-containing clathrates, two main regions can be
distinguished in the KZS and BGS spectra: around 60–80 cm−1

and above 150 cm−1. Traditionally, the modes below 40 cm−1
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FIG. 5. Raman (top) and NRIXS (Sn VDOS, bottom) spectra for
KZS. NRIXS data points are shown as markers with error bars, while
the solid curve represents three-point running average. The individual
peaks are shown as gray dashed lines. Their frequencies are listed in
Table I.

band in KZS is shifting to higher frequencies in BGS (Fig. 3),
consistent with the lighter Ga16Sn30 framework compared to
the Zn4Sn42 one. Such a dependence on the framework mass
can be noticed in previous studies as well (e.g., Ga16Ge30
versus Ga8Sn38) [42]. To summarize the Raman discussion,
the two regions with prominent features are sensitive to the
number of Sn atoms in the unit cell and to the nature of the
substituted atoms in the framework (high-frequency region,
180–230 cm−1), and to the overall mass of the framework
(low-frequency region, around 60 cm−1).

Among the clathrate forming elements in the periodic
table [1], three isotopes are suitable for routine NRIXS
measurements: 151Eu [29], 119Sn [38], and 121Sb [46]. Due to
its isotope-selectiveness, NRIXS is an ideal tool for separating
the guest and host framework contributions to the density of
states that can be obtained from inelastic neutron scattering
measurements [18]. Indeed, NRIXS has been used previously
to probe the vibrational dynamics of the “rattling” Eu guest
atoms in Eu8Ga16Ge30 [13], but, to the best of our knowledge,
has never been applied to target the host framework in
clathrates.

To facilitate the following discussion, we plot together the
Raman and NRIXS (Sn VDOS) spectra for KZS and BGS
in Figs. 5 and 6, respectively. The lower panels also include
the individual peaks (Gaussians, with the exception of the
lowest-frequency one, which is log-normal; their frequencies
are listed in Table I). For the sake of clarity, the fitting
results, which match almost perfectly the averaged curves in
Figs. 5 and 6, are not shown. The raw NRIXS spectra, the
resolution function, the normalized spectra, and the one- and
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FIG. 6. Raman (top) and NRIXS (Sn VDOS, bottom) spectra for
BGS. NRIXS data points are shown as markers with error bars, while
the solid curve represents five-point running average. The individual
peaks are shown as gray dashed lines. Their frequencies are listed in
Table I.

multi-phonon contributions are shown in Figs. S2 and S3 of
Ref. [34].

Common Raman and NRIXS bands have been observed
before [47–49]. In the present study however, the predom-
inance of Sn atoms in the compounds investigated leads
to remarkable, uncommon similarities between the Raman
and NRIXS spectra, both for KZS and BGS. Like in the
theoretical results for guest-free Sn46 [16], two regions with
a higher concentration of density of states are noticeable:
between 30 and 80 cm−1 (≈3.7–10 meV) and between 160
and 200 cm−1 (≈20–25 meV). No signal, other than due to
statistical fluctuations, is present above 240 cm−1, consistent
with the Raman spectra and with previous Raman studies on
Sn-containing clathrates. For KZS, an almost perfect one-to-
one correspondence can be achieved between the Raman and
NRIXS bands (Fig. 5, Table I). Two possible exceptions are
the weak 68 cm−1 Raman band, which may be hidden by the
neighboring strong 55-cm−1 NRIXS peak and the 134-cm−1

NRIXS band, which may be Raman inactive.
Good agreement between the results produced by the two

experiments exists for BGS as well (Fig. 6), although the
weak, featureless 80–140 cm−1 region and the broader bands
above 140 cm−1 make a one-to-one connection between the
two spectra somewhat harder to obtain, compared to KZS.
Nevertheless, both the dominant 60–80 cm−1 peaks and the
140–230 cm−1 feature in the Raman spectrum are clearly
reproduced in the Sn VDOS obtained from NRIXS. The
slight shift of the strong 55-cm−1 Raman band in KZS to
59 cm−1 in BGS is also reproduced by NRIXS (Figs. 5 and 6).
Evidently, NRIXS does not directly probe the dynamics of the
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substituted atoms in the two compounds. However, vibrations
of the neighboring Sn atoms accompany those of the Zn and
Ga atoms, thus leaving a footprint in the Sn VDOS (∼211
cm−1 in KZS, ∼182 cm−1 in BGS).

Since NRIXS targets only the Sn atoms, the almost identical
spectra obtained from the two experiments for both compounds
suggest that the frameworks (Sn atoms in particular) dominate
the Raman spectra in the region investigated. Contributions
from the K and Ba atoms are nevertheless expected, similar to
the mixture between guest atom and framework vibrations pre-
viously reported for a related compound [16]. This expectation
is confirmed by the Eu-based NRIXS study on Eu8Ga16Ge30
by Hermann and coworkers, in which the partial VDOS
of the guest atoms extends up to approximately 70 cm−1.
The significant overlap between the Eu VDOS [13] and Sn
VDOS (this work) in the 40–70 cm−1 region unambiguously
demonstrates that the low-frequency vibrations cannot be
rigidly assigned to either guest or host vibrations, but rather
to a combination of the two. This comparison underscores
the complementariness between the two NRIXS studies on
Zintl clathrates to date, in spite of the differences between the
structures of the three materials: (Ga,Ge) versus (Zn/Ga, Sn)
frameworks; Eu versus K/Ba guest atoms.

Compared to Raman spectroscopy, NRIXS is a highly
quantitative technique. From the partial (Sn in this study)
VDOS numerous thermodynamic and elastic parameters can
be calculated [24,25,50,51]. We begin by considering the
vibrational component of the mean square displacement (msd)
along the incident photon direction ⟨z2⟩v , given by

⟨z2⟩v = 1
3k2

∫
[2n̄(ν̄) + 1]

ν̄R

ν̄
D(ν̄)d ν̄, (2)

in which D(ν̄) is the Sn VDOS, hcν̄R = !2k2/2mj is the recoil
energy of a free nucleus of mass mj absorbing a photon of
energy E = !ck, and n̄ = [exp(hcν̄/kBT ) − 1]−1 represents
the mean occupation number of mode ν̄ at temperature T
(kB is the Boltzmann constant). In this study, ν̄R = 20.76 cm−1

(the photon energy changes only ±70 meV with respect to the
nuclear excitation energy E0 = 23.88 keV), k = 12.1 Å−1 is
the magnitude of the wave vector of the absorbed photon, and∫

D(ν̄)d ν̄ = 3. The ⟨z2⟩v values at 298 K for KZS and BGS
(0.0115 and 0.0106 Å2, respectively) are much smaller than
those obtained from diffraction [31,33], as previously reported
for skutterudites as well [30].

It should be noted here that, like in other Sn-based NRIXS
measurements at room temperature [37,38], multiphonon
contributions are quite significant in both KZS and BGS
(Fig. S2 and S3, panel B, Ref. [34]), leading to somewhat low
values (0.19 for KZS, 0.21 for BGS) for the Lamb-Mössbauer
factor (or recoilless fraction)fLM = exp(−k2 < z2 >v). If fLM
becomes too low, the VDOS cannot be extracted [52].

At sufficiently high temperatures, kBT ≫ hcν̄, the msd
depend linearly on temperature [53]:

⟨z2⟩HT = T
2ν̄RkB

3hck2

∫
D(ν̄)
ν̄2

d ν̄. (3)
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FIG. 7. Temperature dependence of the vibrational contribution
to the Sn msd extrapolated from the Sn VDOS measured at a
single temperature from Eq. (2). Dashed lines represent the high-
temperature slopes determined from Eq. (3).

On the other hand, ⟨z2⟩v does not vanish as T → 0, but
approaches a finite value given by [53]

⟨z2⟩0 = ν̄R

3k2

∫
D(ν̄)

ν̄
d ν̄. (4)

A comparison between these extreme cases yields a temper-
ature T ∗ at which the high-temperature msd [Eq. (3)] first
exceeds the zero-point motion [Eq. (4)]. The T ∗ values for the
two compounds are 42 K for KZS and 44 K for BGS.

Using Eq. (2), we extrapolated the temperature dependence
of the vibrational contribution to the msd for KZS and
BGS from the Sn VDOS measured at a single temperature
(continuous lines in Fig. 7). The limiting high-temperature
slopes Eq. (3) are indicated as dashed lines. Their values are
3.8 × 10−5 Å2/K for KZS and 3.5 × 10−5 Å2/K for BGS.

As seen above, the msd depend strongly on temperature.
The concept of resilience [54],

kr = kB

d < z2 > /dT
, (5)

was introduced to describe in a compact way the temperature
dependence of the atomic fluctuations in proteins when this
dependence is approximately linear. Therefore the VDOS
obtained from NRIXS measurements at a single temperature
yields the resilience of the Sn framework [Eqs. (3) and (5)].
The kr values for KZS and BGS are 36.4 and 39.5 N/m,
respectively. The slightly stronger temperature dependence
for KZS with respect to BGS (Fig. 7) can be explained by
an increased Sn VDOS integrated area for the former below
approximately 65 cm−1 [Fig. 8(a)].

In Fig. 8, we plot the quantities D(ν̄)/ν̄ [panel (b)] and
D(ν̄)/ν̄2 [panel (c)] as a function of frequency. The modes
below 90 cm−1 represent 85% of the integrated area of D(ν̄)/ν̄2

for KZS and 84% for BGS, while they contribute only 63%
and 62%, respectively, to the integrated area of D(ν̄)/ν̄ in
the same range. These results indicate that low-frequency
vibrations dominate the high-temperature behavior of the Sn
msd [Eq. (3)], while the full spectrum contributes to the
zero-point motion [Eq. (4)]. Not surprisingly, the shift of the
55 cm−1 Raman band in KZS (Fig. 3, Table I) by ∼4 cm−1 in
BGS not only that is reflected in the Sn VDOS of the respective
compounds [Fig. 8(a)], but it leads to a noticeable difference
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substituted atoms in the two compounds. However, vibrations
of the neighboring Sn atoms accompany those of the Zn and
Ga atoms, thus leaving a footprint in the Sn VDOS (∼211
cm−1 in KZS, ∼182 cm−1 in BGS).

Since NRIXS targets only the Sn atoms, the almost identical
spectra obtained from the two experiments for both compounds
suggest that the frameworks (Sn atoms in particular) dominate
the Raman spectra in the region investigated. Contributions
from the K and Ba atoms are nevertheless expected, similar to
the mixture between guest atom and framework vibrations pre-
viously reported for a related compound [16]. This expectation
is confirmed by the Eu-based NRIXS study on Eu8Ga16Ge30
by Hermann and coworkers, in which the partial VDOS
of the guest atoms extends up to approximately 70 cm−1.
The significant overlap between the Eu VDOS [13] and Sn
VDOS (this work) in the 40–70 cm−1 region unambiguously
demonstrates that the low-frequency vibrations cannot be
rigidly assigned to either guest or host vibrations, but rather
to a combination of the two. This comparison underscores
the complementariness between the two NRIXS studies on
Zintl clathrates to date, in spite of the differences between the
structures of the three materials: (Ga,Ge) versus (Zn/Ga, Sn)
frameworks; Eu versus K/Ba guest atoms.

Compared to Raman spectroscopy, NRIXS is a highly
quantitative technique. From the partial (Sn in this study)
VDOS numerous thermodynamic and elastic parameters can
be calculated [24,25,50,51]. We begin by considering the
vibrational component of the mean square displacement (msd)
along the incident photon direction ⟨z2⟩v , given by

⟨z2⟩v = 1
3k2

∫
[2n̄(ν̄) + 1]

ν̄R

ν̄
D(ν̄)d ν̄, (2)

in which D(ν̄) is the Sn VDOS, hcν̄R = !2k2/2mj is the recoil
energy of a free nucleus of mass mj absorbing a photon of
energy E = !ck, and n̄ = [exp(hcν̄/kBT ) − 1]−1 represents
the mean occupation number of mode ν̄ at temperature T
(kB is the Boltzmann constant). In this study, ν̄R = 20.76 cm−1

(the photon energy changes only ±70 meV with respect to the
nuclear excitation energy E0 = 23.88 keV), k = 12.1 Å−1 is
the magnitude of the wave vector of the absorbed photon, and∫

D(ν̄)d ν̄ = 3. The ⟨z2⟩v values at 298 K for KZS and BGS
(0.0115 and 0.0106 Å2, respectively) are much smaller than
those obtained from diffraction [31,33], as previously reported
for skutterudites as well [30].

It should be noted here that, like in other Sn-based NRIXS
measurements at room temperature [37,38], multiphonon
contributions are quite significant in both KZS and BGS
(Fig. S2 and S3, panel B, Ref. [34]), leading to somewhat low
values (0.19 for KZS, 0.21 for BGS) for the Lamb-Mössbauer
factor (or recoilless fraction)fLM = exp(−k2 < z2 >v). If fLM
becomes too low, the VDOS cannot be extracted [52].

At sufficiently high temperatures, kBT ≫ hcν̄, the msd
depend linearly on temperature [53]:
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2ν̄RkB
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On the other hand, ⟨z2⟩v does not vanish as T → 0, but
approaches a finite value given by [53]

⟨z2⟩0 = ν̄R

3k2

∫
D(ν̄)

ν̄
d ν̄. (4)

A comparison between these extreme cases yields a temper-
ature T ∗ at which the high-temperature msd [Eq. (3)] first
exceeds the zero-point motion [Eq. (4)]. The T ∗ values for the
two compounds are 42 K for KZS and 44 K for BGS.

Using Eq. (2), we extrapolated the temperature dependence
of the vibrational contribution to the msd for KZS and
BGS from the Sn VDOS measured at a single temperature
(continuous lines in Fig. 7). The limiting high-temperature
slopes Eq. (3) are indicated as dashed lines. Their values are
3.8 × 10−5 Å2/K for KZS and 3.5 × 10−5 Å2/K for BGS.

As seen above, the msd depend strongly on temperature.
The concept of resilience [54],

kr = kB

d < z2 > /dT
, (5)

was introduced to describe in a compact way the temperature
dependence of the atomic fluctuations in proteins when this
dependence is approximately linear. Therefore the VDOS
obtained from NRIXS measurements at a single temperature
yields the resilience of the Sn framework [Eqs. (3) and (5)].
The kr values for KZS and BGS are 36.4 and 39.5 N/m,
respectively. The slightly stronger temperature dependence
for KZS with respect to BGS (Fig. 7) can be explained by
an increased Sn VDOS integrated area for the former below
approximately 65 cm−1 [Fig. 8(a)].

In Fig. 8, we plot the quantities D(ν̄)/ν̄ [panel (b)] and
D(ν̄)/ν̄2 [panel (c)] as a function of frequency. The modes
below 90 cm−1 represent 85% of the integrated area of D(ν̄)/ν̄2

for KZS and 84% for BGS, while they contribute only 63%
and 62%, respectively, to the integrated area of D(ν̄)/ν̄ in
the same range. These results indicate that low-frequency
vibrations dominate the high-temperature behavior of the Sn
msd [Eq. (3)], while the full spectrum contributes to the
zero-point motion [Eq. (4)]. Not surprisingly, the shift of the
55 cm−1 Raman band in KZS (Fig. 3, Table I) by ∼4 cm−1 in
BGS not only that is reflected in the Sn VDOS of the respective
compounds [Fig. 8(a)], but it leads to a noticeable difference
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substituted atoms in the two compounds. However, vibrations
of the neighboring Sn atoms accompany those of the Zn and
Ga atoms, thus leaving a footprint in the Sn VDOS (∼211
cm−1 in KZS, ∼182 cm−1 in BGS).

Since NRIXS targets only the Sn atoms, the almost identical
spectra obtained from the two experiments for both compounds
suggest that the frameworks (Sn atoms in particular) dominate
the Raman spectra in the region investigated. Contributions
from the K and Ba atoms are nevertheless expected, similar to
the mixture between guest atom and framework vibrations pre-
viously reported for a related compound [16]. This expectation
is confirmed by the Eu-based NRIXS study on Eu8Ga16Ge30
by Hermann and coworkers, in which the partial VDOS
of the guest atoms extends up to approximately 70 cm−1.
The significant overlap between the Eu VDOS [13] and Sn
VDOS (this work) in the 40–70 cm−1 region unambiguously
demonstrates that the low-frequency vibrations cannot be
rigidly assigned to either guest or host vibrations, but rather
to a combination of the two. This comparison underscores
the complementariness between the two NRIXS studies on
Zintl clathrates to date, in spite of the differences between the
structures of the three materials: (Ga,Ge) versus (Zn/Ga, Sn)
frameworks; Eu versus K/Ba guest atoms.

Compared to Raman spectroscopy, NRIXS is a highly
quantitative technique. From the partial (Sn in this study)
VDOS numerous thermodynamic and elastic parameters can
be calculated [24,25,50,51]. We begin by considering the
vibrational component of the mean square displacement (msd)
along the incident photon direction ⟨z2⟩v , given by

⟨z2⟩v = 1
3k2

∫
[2n̄(ν̄) + 1]

ν̄R

ν̄
D(ν̄)d ν̄, (2)

in which D(ν̄) is the Sn VDOS, hcν̄R = !2k2/2mj is the recoil
energy of a free nucleus of mass mj absorbing a photon of
energy E = !ck, and n̄ = [exp(hcν̄/kBT ) − 1]−1 represents
the mean occupation number of mode ν̄ at temperature T
(kB is the Boltzmann constant). In this study, ν̄R = 20.76 cm−1

(the photon energy changes only ±70 meV with respect to the
nuclear excitation energy E0 = 23.88 keV), k = 12.1 Å−1 is
the magnitude of the wave vector of the absorbed photon, and∫

D(ν̄)d ν̄ = 3. The ⟨z2⟩v values at 298 K for KZS and BGS
(0.0115 and 0.0106 Å2, respectively) are much smaller than
those obtained from diffraction [31,33], as previously reported
for skutterudites as well [30].

It should be noted here that, like in other Sn-based NRIXS
measurements at room temperature [37,38], multiphonon
contributions are quite significant in both KZS and BGS
(Fig. S2 and S3, panel B, Ref. [34]), leading to somewhat low
values (0.19 for KZS, 0.21 for BGS) for the Lamb-Mössbauer
factor (or recoilless fraction)fLM = exp(−k2 < z2 >v). If fLM
becomes too low, the VDOS cannot be extracted [52].

At sufficiently high temperatures, kBT ≫ hcν̄, the msd
depend linearly on temperature [53]:

⟨z2⟩HT = T
2ν̄RkB

3hck2

∫
D(ν̄)
ν̄2

d ν̄. (3)
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FIG. 7. Temperature dependence of the vibrational contribution
to the Sn msd extrapolated from the Sn VDOS measured at a
single temperature from Eq. (2). Dashed lines represent the high-
temperature slopes determined from Eq. (3).

On the other hand, ⟨z2⟩v does not vanish as T → 0, but
approaches a finite value given by [53]

⟨z2⟩0 = ν̄R

3k2

∫
D(ν̄)

ν̄
d ν̄. (4)

A comparison between these extreme cases yields a temper-
ature T ∗ at which the high-temperature msd [Eq. (3)] first
exceeds the zero-point motion [Eq. (4)]. The T ∗ values for the
two compounds are 42 K for KZS and 44 K for BGS.

Using Eq. (2), we extrapolated the temperature dependence
of the vibrational contribution to the msd for KZS and
BGS from the Sn VDOS measured at a single temperature
(continuous lines in Fig. 7). The limiting high-temperature
slopes Eq. (3) are indicated as dashed lines. Their values are
3.8 × 10−5 Å2/K for KZS and 3.5 × 10−5 Å2/K for BGS.

As seen above, the msd depend strongly on temperature.
The concept of resilience [54],

kr = kB

d < z2 > /dT
, (5)

was introduced to describe in a compact way the temperature
dependence of the atomic fluctuations in proteins when this
dependence is approximately linear. Therefore the VDOS
obtained from NRIXS measurements at a single temperature
yields the resilience of the Sn framework [Eqs. (3) and (5)].
The kr values for KZS and BGS are 36.4 and 39.5 N/m,
respectively. The slightly stronger temperature dependence
for KZS with respect to BGS (Fig. 7) can be explained by
an increased Sn VDOS integrated area for the former below
approximately 65 cm−1 [Fig. 8(a)].

In Fig. 8, we plot the quantities D(ν̄)/ν̄ [panel (b)] and
D(ν̄)/ν̄2 [panel (c)] as a function of frequency. The modes
below 90 cm−1 represent 85% of the integrated area of D(ν̄)/ν̄2

for KZS and 84% for BGS, while they contribute only 63%
and 62%, respectively, to the integrated area of D(ν̄)/ν̄ in
the same range. These results indicate that low-frequency
vibrations dominate the high-temperature behavior of the Sn
msd [Eq. (3)], while the full spectrum contributes to the
zero-point motion [Eq. (4)]. Not surprisingly, the shift of the
55 cm−1 Raman band in KZS (Fig. 3, Table I) by ∼4 cm−1 in
BGS not only that is reflected in the Sn VDOS of the respective
compounds [Fig. 8(a)], but it leads to a noticeable difference
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pressure achieved at the APS. More details on both experi-
mental high pressure series done at the ESRF and APS will
be presented elsewhere [16].

Metallic tin enriched to 93% in 119Sn was used in the
nuclear resonant inelastic x-ray scattering (NRIXS) experi-
ments. At ambient conditions the NRIXS spectrum was
recorded with the !-Sn metal piece prepared between two
pieces of adhesive tape, which were then placed between
two avalanche photodiode (APD) detectors. The high pres-
sure NRIXS experiments were executed with a Paderborn-
type diamond anvil cell (DAC) [17]. For measurements
at 4.6 and 13.1 GPa, metallic Sn was loaded into a Be
gasket. For measurements at 37 and 64 GPa, the sample
was loaded in a specially designed Re gasket. A 4:1
methanol-ethanol mixture was used as a pressure trans-
mitting medium and some spherical ruby crystals were
used for pressure determination [18]. The NRIXS setup
of the beam line is described in Ref. [19]. An energy range
of!60 meV for 0 and 4.6 GPa, and!70 meV for 13.1, 37,
and 64 GPa was scanned in steps of 0.25 meV. The x-ray
beam was focused by two Kirkpatrick-Baez mirrors to a
7" 7 "m2 area impinging on the 119Sn sample in the
DAC. The inelastic resonant excitations were observed
by collecting the delayed 119Sn # quanta with two APDs
placed perpendicular to the beam [17,19]. Typically, 30 to
40 NRIXS spectra, each collected in 40 min, were mea-
sured under pressure and then combined. The combined
NRIXS spectra are plotted in Fig. 1. The left y scale
represents the actual count rate, while the right y scale
gives the normalization of the data by using Lipkin’s sum
rules [20]. Here, the first moment of the spectrum is equal
to the recoil energy, ER # 2:575 meV, of 119Sn. In
Fig. 1(a) the overwhelming multiphonon contributions
for ambient !-Sn are indicated. As tried previously [13–
15], the phonon DOS matching the neutron scattering data
[21] could not be extracted for the !-Sn phase. With
increasing pressure multiphonon contributions decrease,
which makes it possible to extract the phonon DOS from
the NRIXS signal. The phonon DOS g$E% of Sn in phase III
and IV, derived from the measured NRIXS spectra by
subtraction of multiphonon excitations and the elastic
line [22], are shown in Fig. 2. As expected, the phonon
energies shift evenly toward higher energies with increas-
ing pressure. Drastic changes in the shapes of the phonon
DOS between bct-Sn and bcc-Sn are not visible.

The phonon dispersion and DOS of Sn have been calcu-
lated using density functional theory methods. The vibra-
tional frequencies were obtained by applying the direct
force method [2–4,23] to results obtained from DFT cal-
culations using the all-electron projector augmented wave
(PAW) method [24] as implemented in the VASP code
[25,26]. The PAW potentials included in the VASP distribu-
tion with 14 valence electrons were used. Calculations with
both the generalized gradient approximation (GGA) and
the local density approximation (LDA) for the exchange-
correlation potential were performed using a large (54-
atom) simulation cell. The total-energy convergence with

respect to k-mesh and energy cutoff was tested. The direct
force method evaluates the force constants in the simula-
tion cell consisting of repeated unit cells (at the experi-
mental geometry) from the forces on all atoms calculated
in response to the displacement of the basis atom in one
unit cell. A spatial Fourier transform with a given wave
vector q of the force constants results in the q-dependent
dynamical matrix. Diagonalization of the dynamical ma-
trix gives the corresponding frequencies. Collecting the
frequencies for the wave vectors on a fine mesh in the first
Brillouin zone yields the theoretical DOS. Figure 3 shows
the calculated phonon dispersion and DOS at the highest
(64 GPa) pressure achieved by the APS experiment. At this
high pressure, multiphonon contributions are effectively
suppressed, making the extracted phonon DOS highly
reliable. The results provide the best experimental bench-
mark for comparison with the calculated results.

Since the bcc lattice has only one atom in the primitive
cell, there are no optical phonon branches. In Fig. 3(b) the
theoretical and experimental phonon DOS of bcc-Sn at

FIG. 1. Metallic 119Sn NRIXS spectra (a) at ambient condi-
tions and (b),(c) under high pressure at 300 K. The insets show
the NRIXS spectra in a logarithmic plot. In (a), the one-phonon
(n # 1), two-phonon (n # 2), and n-phonon (n > 2) contribu-
tions are indicated.
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64 GPa are compared. The agreement between the calcu-
lations and the experiment is very good in both the magni-
tude and energies of the spectra. It is noted that the GGA
calculation provides a better description at the high-
frequency side. Similar agreement between experimental
and theoretical DOS has also been achieved at lower

pressures. The results will be presented in a forthcoming
paper [16].

From the phonon DOS presented above, elastic and
thermodynamic quantities important to understanding the
properties of Sn can be obtained. The Lamb-Mössbauer
factor fLM, the mean force constant Dmean, the vibrational
contributions to the Helmholtz free energy Fvib, and the
high-temperature Debye temperature !D;HT for Sn are
calculated by integrating the corresponding experimental
and theoretical partial phonon DOS g!E" [cf. Figs. 4(a)–
4(d)] according to the formulas in Ref. [19]. The low-
temperature Debye temperature !D;LT and the Debye av-
erage phonon velocity vD are calculated from the low
energy part of the phonon DOS, where the Debye approxi-
mation (g!E" # E2) is valid. The pressure/volume data to
calculate vD are taken from Refs. [7,9]. It is seen that the
theoretical phonon DOS using the GGA calculation pro-
duces these quantities in better agreement with experiment
at 64 GPa. For comparison at lower pressures (37 and
13.1 GPa), we only show the theoretical data obtained
from the GGA calculations. The good agreement between
the theory and experiment demonstrates the high quality of
the measured and calculated phonon DOS over a large
range of high pressure.

The Lamb-Mössbauer factor fLM increases from ambi-
ent conditions to the highest pressure achieved in these
measurements by an order of magnitude and reaches 45%
at 64 GPa. It is interesting to note that the experimentally
and theoretically (GGA) determined low-temperature
Debye temperature !D;LT is smaller than the high-
temperature Debye temperature !D;HT. This is in contrast
to the situation in most solids where !D;LT is typically
about 10%–15% higher than !D;HT. This result reveals an
important feature of the lattice dynamics of Sn that must be
considered in the construction of its (p; T) phase diagram.
From the volume dependence of !D;HT the Debye
Grüneisen parameter, !D $ %!d ln!D;HT=d lnV", is calcu-
lated. With the volume data from Refs. [7,9] the Debye
Grüneisen parameter is !D $ 2:0!1" between 13.1 and
64 GPa, which is a normal value for simple solids.

In summary, we have performed NRIXS experiments
and successfully extracted phonon density of states of Sn at
high pressure to 64 GPa. This represents a major experi-
mental advancement and fulfills a long-sought objective in
high pressure materials research. Density functional theory
calculations applying the direct force method give results
in excellent agreement with the measured data. Based on
the obtained phonon DOS, we derived several thermody-
namic quantities important to understanding the lattice
dynamics and construction of the (p; T) phase diagram of
Sn. This combined experimental and theoretical investiga-
tion establishes a reliable description of the lattice dynam-
ics of Sn at high pressure. It also validates the theoretical
methods employed here for their use in further studies of
the thermodynamic properties of Sn and its compounds at
high pressures.

FIG. 3 (color online). (a) Theoretical phonon dispersion rela-
tion of bcc-Sn at 64 GPa. The inset shows the Brillouin zone of
the bcc-Sn lattice. (b) Comparison between the theoretically
calculated phonon DOS (lines) and the experimentally derived
phonon DOS at 64 GPa (circles).

FIG. 2. Phonon DOS of Sn at high pressures at T $ 300 K
extracted from the measured NRIXS spectra after removing the
contributions from multiphonon excitations and the elastic line.
g!E" is given on a per atom basis.
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Grünsteudel, H. Grünsteudel, J. Plessel, H. Winkelmann,
and M. M. Abd-Elmeguid, Phys. Rev. B 58, 254 (1998).

[14] M. Y. Hu, Ph.D. thesis, Northwestern University, 1999.
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FIG. 4. Elastic and thermodynamic parameters of Sn under
pressure: (a) the Lamb-Mössbauer factor fLM, (b) the mean
force constant Dmean, (c) the vibrational contributions to the
Helmholtz free energy Fvib, (d) the high- and low-temperature
Debye temperature !D;HT and !D;LT, and (e) the Debye average
phonon velocity vD. The results (symbols) are calculated using
the experimental phonon DOS (circles) from Fig. 2 and the
theoretical phonon DOS (square: LDA; triangles: GGA). The
vertical dotted lines indicate the pressure points that separate
different phases of Sn. The solid lines are guides to the eye.
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64 GPa are compared. The agreement between the calcu-
lations and the experiment is very good in both the magni-
tude and energies of the spectra. It is noted that the GGA
calculation provides a better description at the high-
frequency side. Similar agreement between experimental
and theoretical DOS has also been achieved at lower

pressures. The results will be presented in a forthcoming
paper [16].

From the phonon DOS presented above, elastic and
thermodynamic quantities important to understanding the
properties of Sn can be obtained. The Lamb-Mössbauer
factor fLM, the mean force constant Dmean, the vibrational
contributions to the Helmholtz free energy Fvib, and the
high-temperature Debye temperature !D;HT for Sn are
calculated by integrating the corresponding experimental
and theoretical partial phonon DOS g!E" [cf. Figs. 4(a)–
4(d)] according to the formulas in Ref. [19]. The low-
temperature Debye temperature !D;LT and the Debye av-
erage phonon velocity vD are calculated from the low
energy part of the phonon DOS, where the Debye approxi-
mation (g!E" # E2) is valid. The pressure/volume data to
calculate vD are taken from Refs. [7,9]. It is seen that the
theoretical phonon DOS using the GGA calculation pro-
duces these quantities in better agreement with experiment
at 64 GPa. For comparison at lower pressures (37 and
13.1 GPa), we only show the theoretical data obtained
from the GGA calculations. The good agreement between
the theory and experiment demonstrates the high quality of
the measured and calculated phonon DOS over a large
range of high pressure.

The Lamb-Mössbauer factor fLM increases from ambi-
ent conditions to the highest pressure achieved in these
measurements by an order of magnitude and reaches 45%
at 64 GPa. It is interesting to note that the experimentally
and theoretically (GGA) determined low-temperature
Debye temperature !D;LT is smaller than the high-
temperature Debye temperature !D;HT. This is in contrast
to the situation in most solids where !D;LT is typically
about 10%–15% higher than !D;HT. This result reveals an
important feature of the lattice dynamics of Sn that must be
considered in the construction of its (p; T) phase diagram.
From the volume dependence of !D;HT the Debye
Grüneisen parameter, !D $ %!d ln!D;HT=d lnV", is calcu-
lated. With the volume data from Refs. [7,9] the Debye
Grüneisen parameter is !D $ 2:0!1" between 13.1 and
64 GPa, which is a normal value for simple solids.

In summary, we have performed NRIXS experiments
and successfully extracted phonon density of states of Sn at
high pressure to 64 GPa. This represents a major experi-
mental advancement and fulfills a long-sought objective in
high pressure materials research. Density functional theory
calculations applying the direct force method give results
in excellent agreement with the measured data. Based on
the obtained phonon DOS, we derived several thermody-
namic quantities important to understanding the lattice
dynamics and construction of the (p; T) phase diagram of
Sn. This combined experimental and theoretical investiga-
tion establishes a reliable description of the lattice dynam-
ics of Sn at high pressure. It also validates the theoretical
methods employed here for their use in further studies of
the thermodynamic properties of Sn and its compounds at
high pressures.

FIG. 3 (color online). (a) Theoretical phonon dispersion rela-
tion of bcc-Sn at 64 GPa. The inset shows the Brillouin zone of
the bcc-Sn lattice. (b) Comparison between the theoretically
calculated phonon DOS (lines) and the experimentally derived
phonon DOS at 64 GPa (circles).

FIG. 2. Phonon DOS of Sn at high pressures at T $ 300 K
extracted from the measured NRIXS spectra after removing the
contributions from multiphonon excitations and the elastic line.
g!E" is given on a per atom basis.
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initial and final scans revealed no differences, confirming the
absence of measurable radiation damage.
We have previously reported both the measured excitation

probability for polycrystalline Fe(TPP)(NO)28 and total Fe
VDOS D(νj) derived from the measured NRVS signal for both
the polycrystalline sample and the oriented array of Fe(TPP)-
(NO) crystals.37 The compounds shown in Figure 2 share the
basic Fe porphyrin core (Figure 1) but differ in the axial ligand
(NO, Cl-, or no axial ligand), Fe oxidation state, and peripheral
substituents on the porphyrin. Clearly, these factors lead to
significant variations in mode structure, but inspection of Figure
2 reveals some common features and allows tentative identifica-
tion of some modes.
In particular, all five ferrous nitrosyl porphyrins (Figure 2

c-g) have an Fe mode in the 520-540 cm-1 range. In contrast,
neither the four-coordinate reduced complex Fe(OEP), nor the
five-coordinate ferric complex Fe(OEP)(Cl) shows features
above 400 cm-1. This suggests a significant motion of the FeNO
fragment for modes observed at 521 cm-1 in Fe(OEP)(NO),
533 cm-1 in Fe(DPIXDME)(NO), 526 cm-1 in Fe(MPIXDME)-
(NO), and 528 cm-1 in Fe(PPIXDME)(NO), consistent with
our previous identification of the mode at 539 cm-1 in Fe(TPP)-
(NO)28,37 with Fe-NO stretching. On the other hand, the mode

composition factors determined from the spectral areas (eFe
2 )

0.33 for Fe(OEP)(NO), eFe
2 ) 0.27 for Fe(DPIXDME)(NO),

eFe
2 ) 0.24 for Fe(MPIXDME)(NO), eFe

2 ) 0.23 for Fe-
(PPIXDME)(NO), and eFe

2 ) 0.30 for Fe(TPP)(NO)) vary
significantly, with the extreme of the range approaching the
value eFe

2 ) 0.34 expected for a two-body 57Fe-NO oscillator.
The value reported here for Fe(TPP)(NO), based on fitting a
Voigt function to the 540 cm peak, is slightly lower than the
value we previously reported based on a Lorentzian fit to the
same data.28
Raman investigations of ferrous nitrosyl porphyrins in solu-

tion have assigned Fe-NO frequencies in the range 514-530
cm-1.134-137 In particular, the Fe-NO stretching frequency is
identified at 527 cm-1 for Fe(PPIX)(NO) encapsulated in cholate
micelles in aqueous solution137 and ranges from 524 to 527 cm-1

for Fe(TPP)(NO) in various solvents.134,136 Fe-NO frequencies
were also reported at 527 cm-1 for both Fe(TPP)(NO) and Fe-
(OEP)(NO) in pyridine,135 although these were originally
believed to be six-coordinate complexes with pyridine binding
trans to NO. These observations essentially support our Fe-
NO assignment, but reported Fe-NO frequencies in solution
at room temperature differ by up to 13 cm-1 from the
frequencies we measured in the solid state at low temperatures.
In an attempt to clarify this difference, we recorded Raman

spectra on Fe(TPP)(NO) powders (Figure 3). To minimize
possible photochemical artifacts, the sample was sealed in a
rapidly spinning NMR tube. With sufficiently restricted laser
intensity, a band is apparent at 547 cm-1. Increasing the laser
power by a factor of 100 resulted in reduction of the relative
intensity of this band (Figure 3), accompanied by a shift of the
high frequency ν4 marker band (not shown) from 1369 to 1361
cm-1, suggestive of NO photolysis. The difference between this
547 cm-1 Raman frequency and the 540 cm-1 frequency we
observe in the NRVS spectra of the low temperature powder is
larger than the experimental uncertainty but may be partly
attributed to the 1.4 cm-1 57Fe/56Fe frequency shift expected28
between the 57Fe-enriched NRVS and natural isotopic abundance
Raman samples for a mode with eFe

2 ) 0.30.

(134) Choi, I.-K.; Liu, Y.; Feng, D.; Paeng, K.-J.; Ryan, M. D. Inorg. Chem.
1991, 30, 1832-1839.

(135) Lipscomb, L. A.; Lee, B. S.; Yu, N. T. Inorg. Chem. 1993, 32, 281-286.
(136) Vogel, K. M.; Kozlowski, P. M.; Zgierski, M. Z.; Spiro, T. G. J. Am.

Chem. Soc. 1999, 121, 9915-9921.

Figure 2. Measured 57Fe excitation probabilities for a series of iron
porphyrins. All nitrosyl complexes have an Fe-NO stretch/bend mode in
the 520-540 cm-1 region. Comparison among the nitrosyl complexes (c-
g) reveals that peripheral groups strongly influence the vibrational frequen-
cies and amplitudes of the central Fe. Sample temperatures were 34 K for
Fe(OEP), 30 K for Fe(OEP)(NO), 80 K for Fe(TPP)(NO), 35 K for Fe-
(DPIXDME)(NO), 34 K for Fe(PPIXDME)(NO), and 64 K for Fe-
(MPIXDME)(NO). The Fe(OEP)(Cl) spectrum is an average over multiple
scans with an estimated average temperature of 87 K. Error bars reflect
Poisson statistics.

Figure 3. Raman spectra of Fe(TPP)(NO) powders, showing elimination
of the 547 cm-1 peak with increasing laser flux. Scattering from powder in
a spinning NMR tube was excited at 413.1 nm, using laser powers of 0.1
and 10 mW.

A R T I C L E S Leu et al.
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 OEP: octaethylporphyrin; 

TPP: Tetraphenylporphyrin

DPIXDME, deuteroporphyrin IX dimethyl ester 

PPIXDME, protoporphyrin IX dimethyl ester 

MPIXDME, mesoporphyrin IX dimethyl ester
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5. Element and isotope selective
6. No unpredictable cancellations in scattering 

terms

Matt Smith, et al, Inorganic Chemistry, 2005, 44,5562
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~ 0.1meV, all-vacuum high resolution monochromator
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Synchrotron-Derived Vibrational Data Confirm Unprotonated Oxo Ligand in
Myoglobin Compound II
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Cleavage of dioxygen bound to the iron atom of heme enzymes
creates reactive monooxygenated heme species, denoted compounds
I and II, having formal Fe(V) and Fe(IV) oxidation states. These
are key intermediates in the reactive cycles of numerous enzymes
including heme-copper oxidases, peroxidases, catalases, and cyto-
chromes P-450.1 Ferryl species of myoglobin (Mb) are formed
during reperfusion of muscle tissue following ischemia, and their
role in oxidative tissue damage is under active discussion.2
The protonation state of the oxo ligand in compound II has

implications for the reactivity of this intermediate.3 Standard
methods lack direct sensitivity to the presence of the proton, and
previous structural investigations have therefore used the length of
the Fe-O bond as an indirect indication of the protonation state,
which should affect the Fe-O bond order. Crystallographic
investigations on ferryl intermediates of several heme proteins have
identified Fe-O distances near 190 pm, suggesting a single bond
to a protonated oxygen.3a,4 On the other hand, EXAFS results have
identified 170 pm Fe-O distances in proteins that have histidine
bound trans to the oxygen, consistent with the traditional formula-
tion as a double bond between the Fe and an unprotonated oxo
group.5 EXAFS investigations find a “long” Fe-O bond only for
compound II of chloroperoxidase, which has a trans cysteine thiolate
ligand.5b
In order to address this issue, we seek more direct vibrational

signatures for protonation of the monooxygen ligand. Figure 1
compares the vibrational dynamics of the heme Fe in Mb compound
II [Mb(IV)dO] with those observed for hydroxymetMb [Mb(III)-
OH], which is well established to have a hydroxyl ion bound to
the ferric heme iron. Both spectra are recorded using nuclear
resonance vibrational spectroscopy (NRVS),6 which reveals Fe-
ligand vibrations as sidebands on the 14.4 keV nuclear resonance
of 57Fe. The flux density (approximately 109 photons/s dispersed
over a 5 × 0.5 mm2 area) is significantly lower than in other X-ray-
based structural methods, and we observe no time-dependent
structural changes attributable to radiation damage at the 20-30
K temperatures of our measurements.
The Fe-O stretching vibrations appear at 805 and 556 cm-1.

Both are spectrally isolated from other vibrations, in contrast with
resonance Raman measurements, where 16O/18O difference spectra
distinguish these vibrations from neighboring vibrations of the heme
macrocycle.3c,7 The 250 cm-1 frequency increase indicates a
substantially stronger Fe-O bond in Mb(IV)dO than in Mb(III)-
OH, consistent with an unprotonated oxygen for the former
complex. Comparison with DFT predictions of the vibrational
densities of states (VDOS), presented in Figure 2, confirms the
identification of these vibrations and further associates a 250 cm-1

frequency increase for Mb(IV)dO with a 17 pm decrease in bond

length. Absolute values of the predicted frequencies and bond
lengths are somewhat larger and smaller, respectively, than the
observed values, possibly due in part to the absence of hydrogen
bonds to the oxygen ligand in the calculated structures.
The calculations further identify the dominant spectral features

observed near 360 cm-1 in both complexes with tilting of the Fe-O
bond with respect to the heme plane, coupled with stretching of
the Fe-N bonds to the heme. Protonation lifts the degeneracy of
these vibrations in either oxidation state, with Fe-O tilting parallel
to the FeOH plane predicted at higher frequency than tilting
perpendicular to this plane. These frequencies are unresolved in
Mb(IV)dO but are separated by 30 cm-1 in both protonated
complexes. Interestingly, calculations predict that oxidation of Mb-
(III)-OH creates spin density on the porphyrin and one propionate,
with minimal influence on the immediate Fe environment. As a
result, vibrational (Figure 2, center panel) and structural predictions
for Mb(IV)-OH strongly resemble those for Mb(III)-OH, sug-

† Northeastern University.
‡ Argonne National Laboratory.

Figure 1. Vibrational dynamics of the heme Fe reveal an unprotonated
oxo ligand in Mb(IV)dO, in contrast with the bound hydroxyl group in
Mb(III)-OH. Protonation of the oxo ligand results in a downshift of the
Fe-O stretching frequency from 805 cm-1 to 556 cm-1, and splits the Fe-O
tilting vibrations, which are degenerate near 362 cm-1 in Mb(IV)dO, but
are separated by 33 cm-1 in the asymmetrically protonated heme Mb(III)-
OH complex. Error bars represent the normalized experimental signal,
multiplied by frequency to facilitate comparison with the extracted
vibrational density of states, presented as a solid curve. Normal mode
representations show only the heme core.
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Protonation state of oxo-ligand in heme protein intermediates:



Fe-O stretching 
Fe-O tilting 
Fe-O tilting  

Lifting of degeneracy of tilting 
frequency by protonation of 
the oxo-ligand

Downshift of Fe-O stretching 
frequency by protonation of 
oxo-ligand


