Plasma Processing R&D

Presented at the Accelerator Advisory Committee Review

Marc Doleans SCL Systems Group Research Accelerator Division

March 24-26, 2015

Since last review

- Studies on Niobium samples to better understand interaction plasma and Nb surfaces
- Developed plasma processing procedure for HB 6-cell cavities
 - Standard plasma tuning methodology
 - Standard gas mixture
 - Applied procedure to five offline cavities
- In-situ plasma processing of a dressed cavity in HTA
 - Cold-tests show cavity performance improvement

Plasma processing R&D at SNS is going well !

Overview

- Plasma processing for SNS SC linac: Context and objectives
- Standard plasma processing procedure for HB 6-cell cavities
- In-situ plasma processing and cold-test results of a cavity in HTA
- Future work and conclusion

Plasma processing R&D context and objectives

Beam energy increase to 1 GeV

- Provide contingency for1.4 MW operation
- Developing in-situ plasma processing of HB cavities
 - HB cavities provides two-thirds of the beam energy gain in the SCL
 - Objective: Average increase of accelerating gradient (Eacc) by 2 MV/m

Second target Station (STS)

- In-situ plasma processing of MB cavities
 - Efficient use of existing RF power in MB section with higher beam loading
 - Objective : Average increase of Eacc by 1.6 MV/m

In-situ plasma processing to reach 1 GeV

- Most cavities at SNS are limited by field emission (FE) leading to thermal instability in end-groups
- In-situ plasma processing to reduce FE and increase Eacc in HB cavities
 - HB cavities are operating below their design specification
 - Average peak surface field (Ep) is lower in HB cavities than in MB cavities
 - 28.5 MV/m (High Beta) vs. 34 MV/m (Medium Beta)
 - HB cavities more efficient at accelerating electrons from FE?
 - Larger residual contamination in HB cryomodules (e.g. surface hydrocarbons)?

Hydrocarbon contaminants in HB cryomodules

- Warm-up sequence of CM-012 from 2K to room-temperature shown below
- Volatile species released from cryomodule surfaces and measured in RGA
 - H₂, N₂, Ar, CO, CH₄, C₂H₄, CO₂, H₂O...
- Evidence of residual Hydrocarbons C_xH_y released from inner surfaces
 - Surface Hydrocarbons can be aggravating factor to field emission process that limits accelerating gradients in the SNS SCL
 - Suspect that a significant fraction of non-volatile Hydrocarbons remain on inner surfaces
- Plasma processing R&D aims first at developing an in-situ processing technique to remove residual Hydrocarbons to increase accelerating gradients

Hydrocarbons also measured on Niobium samples

- Secondary Ion Mass Spectrometry (SIMS) done on various Nb samples
 - Signal near top surface related mainly to H, C, and O elements for mechanically polished samples
 - Similar results with addition of fluorine element for Buffered chemically polished samples
 - Subsequent layers related mostly to Niobium and Niobium oxides

Removing hydrocarbons to increases work function and reduce field emission

- Most SNS cavities are limited by FE leading to thermal instability
 - Field emitted electron current density from the surface follows Fowler-Nordheim equation
 - Electrons probability to tunnel out increases
 - The higher the electric field (βE)
 - The lower the work function $\boldsymbol{\varphi}$

 $J \propto rac{(eta E)^2}{\phi} e^{-b rac{\phi^{1.5}}{eta E}}$

J current density E surface electric field β field enhancement factor φ work function

National Laboratory SOURCE

- Plasma processes can help reducing FE
 - Plasma processing to increase the work function $\boldsymbol{\varphi}$
 - E.g. by cleaning residual hydrocarbons (current SNS R&D)
 - Plasma processing to reduce field enhancement factor $\boldsymbol{\beta}$
 - E.g. plasma etching
 - Plasma processing of particulate contaminants could improve both ϕ and β
- As a rough scaling, it is estimated that accelerating gradient of SNS HB cavities could be increased by 2 MV/m if their surface work function is improved by 0.4 eV
- Studies for plasma processed Nb samples were performed to investigate their change in work function after plasma processing

Low-temperature and low-density reactive plasma for removing hydrocarbons in SNS cavities

- Plasma is a rich and reactive environment
 - lons, e-, neutrals, excited neutrals, molecules, radicals, UV...
- Plasma processing is a versatile technique used in many industries for various purposes
 - Cleaning, activation, deposition, crosslinking, etching....
- Chosen to develop room-temperature reactive oxygen plasma
 - Volatile Hydrocarbon are formed through oxidation and pumped out

National Laboratory | SOURCE

Plasma processing R&D in four phases

R&D with 3-cell and 6-cell cavities

In-situ processing in linac tunnel

Processing of 6-cell cavity in HTA

Processing of cryomodule in test cave

Status of plasma processing R&D

Phase 1 - main objective achieved

Defined plasma processing procedure for HB cavities

Phase 2 - main objective achieved

- In-situ plasma processing of a cavity in HTA
- Demonstration of performance improvement through cold test
- In-situ processing of a second cavity is planned

Phase 3 - in progress

- Hardware development for plasma processing of an offline cryomodule
- Processing and cold-test of HB offline cryomodule is planned in FY15
- Phase 4
 - Plasma processing for HB cryomodules in SNS linac is planned in FY16 and FY17
- Development work coordinating with plasma processing R&D
 - Existing and new SRF facilities (CTF, VTA, HTA etc...)

Successful plasma tuning methodology for HB cavities

- Plasma ignites in discrete cells, tuning necessary to process all cells
 - Dual tone excitation (2 rf generators), on and off-resonance excitation, and plasma loaded cavity theory were used to define an ignition procedure for SNS HB cavity
 - Neon plasma for tuning
 - RF power < 1 kW

- Camera pictures showing a Neon plasma ignited in cell 1 to 6 sequentially in SNS HB cavity
 - Top row: view from left camera
 - Bottom row: view from right camera

Removal of residual hydrocarbons from HB cavity surfaces by introducing oxygen in plasma

- Hydrocarbons on Nb surfaces observed repeatedly during R&D
 - On cavities used in operation, offline cavities, Nb samples...
- Hydrocarbons removed from top surface through oxidation and formation of volatile compounds (H2, H2O, CO and CO2)
 - Typical example of gas analysis during plasma processing of a HB cell shown below

14 Plasma Processing

Hydrocarbons removal studies using Nb samples

- Hydrocarbons concentrated near the top surface of Nb samples • before plasma processing (black dashed curves)
- After short plasma processing time (left figure) ۲
 - Top surface layer is depleted of hydrocarbons but deeper layers aren't
- After longer plasma processing time (right figure) ٠
 - Top surface layer and deeper layers depleted of hydrocarbons

Plasma processing procedure for HB cavities

- A procedure to clean each cell of a SNS HB cavity sequentially has been developed
 - A chemically inert Neon plasma is ignited and tuned into the desired cell of cavity
 - Cleaning agent (e.g. Oxygen) is then introduced into the mixture
 - Once cleaning is done, the cleaning agent is removed from the mixture
 - Plasma is then turned off and the procedure repeats for the next cell

The procedure is robust

- Successfully applied to five different cavities so far

The procedure is safe

- Chemically active components are only introduced when the plasma is stable and positioned into the desired cell
- Uncontrolled ignition (e.g. in the power coupler) is monitored and any risk mitigated since only traces amount of chemically active gases are present during tuning of the plasma

The procedure can be repeated as necessary

- For example to further depletion of hydrocarbon levels below top-surface

Plasma processing increases work function

- Scanning Kelvin Probe instrument used to measure work function
 - Contact potential difference between reference probe and sample
- Plasma processing technique developed at SNS
 - Removes Hydrocarbons
 - Systematically improves the work function
 - For mechanically polished samples
 - For buffered chemical polished samples
 - ~0.5 to 1 eV increase of work function has been observed
- Increase of work function can reduce FE in cavities

Scanning Kelvin probe

In-situ plasma processing of cavity in HTA leads to performance improvement

- Work in support of the plasma processing R&D
 - Horizontal test apparatus was integrated into the SNS SRF test facility in June 2014
 - Spare cavity (HB59) was dressed and prepared in cleanroom
- First cold-test of an in-situ plasma processed cavity in HTA
 - HPRF (High-power RF) baseline test of HB59 at 4K
 - To establish cavity performance before plasma processing is applied
 - In-situ plasma processing of HB59 at room-temperature
 - HPRF test of HB59 at 4K after plasma processing
 - Clear improvement of cavity performance observed

HB59 test prior to plasma processing

HB59 reaches 15.2 MV/m

- Progressive RF conditioning over ~8hrs
- Lots of vacuum activity throughout conditioning
- Eacc stable at 14 MV/m at 20 Hz rep. rate
 - Not stable at 60 Hz
- Repetitive quenches at ~15 MV/m

In-situ plasma processing of HB59 in HTA

• First in-situ plasma processing achieved in HTA

- HTA warmed back-up to room-temperature
- Plasma processing procedure developed at the SNS applied to HB59
 - All 6 cells successfully ignited and processed
 - ~45 minutes processing per cell
 - Evidence of hydrocarbon removal from all cell surfaces

HTA cooled back down after plasma processing

Plasma processing of HB59 in HTA

Hydrocarbon oxidation by-products from HB59 cavity

HB59 performance improved after plasma processing

HB59 tested at cold in HTA after plasma processing

HB59 reaches 20.5 MV/m

- Reduced vacuum activity during conditioning
- Reduced radiation levels
- Eacc stable at 18.5 MV/m at 60 Hz

Summary of performance improvement from in-situ plasma processing of HB59

- HB59 performance was improved by in-situ plasma processing
 - Measurable field emission onset increased
 - Stable accelerating gradient increased
 - Improvement of performance furthered after second plasma processing
 - Could be linked to further depletion of hydrocarbon levels below top surface
 - Overall improvement exceeds average improvement pursued
- In-situ plasma processing of a second dressed cavity is planned

Hardware development for plasma processing of a cryomodule (third R&D phase)

• Plasma processing of an offline HB cryomodule is planned in FY15

- A new manifold is required for the plasma processing of a full cryomodule
 - Main 3D engineering model for a plasma cart has been completed
 - Cart can be configured for single cavity /microwave processing (as shown in pictures below) or for cavity/cryomodule processing
 - Procurement of the cart components has started
 - Parts cleaning and assembly of the cart in the SRF cleanroom are being planned

Conclusion

- Plasma processing R&D is going well
- Standard plasma processing procedure defined
- Achieved in-situ plasma processing of a cavity in HTA
- Demonstrated cavity performance improvement after plasma processing
- In-situ plasma processing and cold-test of a second cavity in HTA is in preparation
- If successful, plasma processing of an offline HB cryomodule is planned for FY15
- Deployment of plasma processing in HB cryomodules of SNS linac planned in FY16 and FY17 to reach 1 GeV beam energy
- Plasma processing of MB cavities for STS is also planned

