Plasma Processing R&D for SNS SRF cavities

Presented at the Accelerator Advisory Committee Review

Marc Doleans Physicist Research Accelerator Division

May 7-9, 2013

Outline

- Introduction on plasma processing and its use at the SNS
- Strategy for developing plasma processing
- Report on on-going R&D

Plasma processing and its use at SNS

- Plasma-based processes are used by many industries
 - Electronics, aerospace, automotive, biomedical....

- Plasma-surface interaction includes
 - Cleaning, deposition, activation, etching, cross-linking...
- Plasma processing at SNS
 - Develop a an in-situ plasma processing technique for SRF cryomodules

Plasma processing to reach 1 GeV

SNS Accelerator 1.4 MW Plan *

- Pulse length extension
- Beam current increase
- Beam energy increase
 - (repair damaged cryomodules, on-going effort)
 - Plasma processing R&D
 - In-situ processing of SCL RF cavities

Pursuing a 15% increase of HB gradients

- Accelerating gradients in SNS SRF cavities mainly limited by
 - Field emission
 - Thermal Instability in end-groups
- S-h. Kim proposed in-situ plasma processing to reduce FE
 - Mild attempt of plasma processing in a cryomodule in 2009 showed promising results*

 R&D started in 2012 to develop a reliable technique for insitu plasma processing at SNS

R&D to in-situ processing in 4 phases

R&D with 3-cell and 6-cell cavities

In-situ processing in linac tunnel

Processing of 6-cell cavity in HTA*

Processing of cryomodule in test cave

4 phases from FY12 to FY17

- Progressively move from plasma processing in R&D system to in-situ processing in operating cryomodules
 - Leverage existing and new SRF facility*
 - Test cave, HTA etc...

	FY12	FY13	FY14	FY15	FY16	FY17
Plasma R&D station set-up	Х					
R&D with 3-cell & 6-cell		Х				
HTA set-up		Х				
R&D with HTA			Х			
Cryomodule set-up			Х			
R&D with cryomodule				Х		
in-situ processing set-up				Х		
In-situ processing					Х	Х

* M. Howell AAC 2013

RF Plasma generated in SNS cavities

- Inject gas in cavity (~1-100 mTorr)
- Excite EM fields in cavity (~10-100s W)
 - Seed electrons reach gas ionization energy
 - Have enough ionization to sustain rf discharge
- Pump out contaminants released from cavity surface
 - e.g. residual hydrocarbons

R&D to control plasma chemistry

- Plasma processing R&D
 - Cleaning of SRF cavity surfaces but,
 - Avoid possible harmful effect such as solid state byproduct and re-deposition

Hardware development: Movable plasma processing station

OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Software development: Comprehensive data acquisition and postprocessing

Plasma ignition using different modes

SNS High-beta - Fundamental modes axial field

- 6 pass band modes can be used for generating a plasma
- Field at ignition depends on the gas specie and pressure
- The location of plasma ignition in the cavity depends on the mode field profile

Cavity plasma Ignition

OAK RIDGE NATIONAL LABORATORY MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Plasma generation in a multicell cavity

- In SNS 6-cell cavities the plasma tends to ignite in discrete cells
- Need to optimize procedure to be capable of processing the entire cavity surface
 - Plasma tuning, multiple mode excitation, and/or sequence of single-mode excitations are being investigated

Niobium samples to study plasma cleaning

- Used quarter-size Niobium samples in 3cell cavity
- Purposefully contaminated samples
 - Hydrocarbon chains
 - Very large contamination compared to the residual contamination in operating cavities
- Introduce samples into cavity to undergo plasma processing
- Detailed analysis of samples before and after plasma processing
- 10-20 mTorr air plasma showed promising results to clean contaminated samples
 - Other gas mixtures (e.g. H and noble gas) are also being investigated

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

First evidence of plasma cleaning

- Plasma processing with air successfully removes hydrocarbon contamination
- Samples at both end of the 3-cell cavity show similar response to processing

- Different types of contaminants are being investigated (e.g. oil, oxide layer...)
- Similar studies started in 6-cell cavities

Surface cleanliness characterization for R&D

- Rapid assessment of the niobium surface cleanliness is key during R&D
 - Direct imaging of Niobium samples using digital microscope when suitable
 - Imaging of cavity surface using borescope to monitor redeposition of contaminants
 - Contact angle measurement of Niobium before and after plasma processing
 - Infrared spectroscopy for rapid evaluation of molecular contamination of Niobium samples

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Preparing for phase 2 and cold test (FY 14)

- HTA and HB 59 preparation
 - Helium vessel welding on HB59 cavity completed
 - HTA to host HB59 for cold test is at vendor
 - Plasma processing and cold tests of HB59 are planned for FY14

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Conclusion

- In-situ plasma processing technique for HB cavities is being developed at SNS and is part of plan to reach1.4 MW
- Four progressive phases from R&D on bare cavities to insitu processing of cryomodules to optimize the new technique and minimize potential risks
- Phase 1 is on-going and shows promising results
- Preparation for phase 2 is on-going and cold tests are planned for FY14
- Deployment of the technique in SC linac is planned for FY16 and FY17

