Accelerator Physics Overview

J. Galambos

Accelerator Advisory Committee, May 7-9, 2013

Outline

- 2012-2013 Progress
 - Selected accelerator physics activities
 - Community involvement
- **RFQ detuning incident**

Longitudinal Twiss Measurement in the Linac (*Shishlo*)

 Use BPM amplitude signal as a measure of bunch length (strength of induced signal ~ bunch length)

Measured SCL input Twiss below, seems to work!

XAL Units	Alpha	Beta	Emittance
Design	0.21	6.07	0.30*10 ⁻⁶
Measured	0.25+- 0.03	10.1 (+4.1,-1.8)	(0.97+- 0.21)*10 ⁻⁶

Submitted to PRST-AB

SCL RF Setup – Automated! *T. Gorlov*

- Process of setting each klystron (1-per-cavity) phase is beam based process – involving scan
 - Original setup took a few days
 - Last 1-2 years reduced to fraction of 1 day
 - Now ~ 30 minutes

Also get more information now during the scans – e.g. used in new Twiss measurement method

Open XAL – Collaboration *T. Pelaia, C. Allen*

Primary development at SNS

•	Target Date	Task	Progress (as of Apr 25, 2013)
	May 3, 2010	Workshop at SNS	
•	Oct 31, 2010	Project Creation and Architecture	100%
•	Dec 31, 2010	Website Development	100%
	Feb 15, 2011	Application Framework Migration	100%
•	Apr 30, 2011	New Online Model Implementation	100%
•	Sep 30, 2011	Fix All Compiler Warnings with Strictest Settings	100%
•	Feb 28, 2012	JSON Framework Implementation	100%
	Feb 28, 2012	Common Package Migration	100%
	Oct 31, 2012	New Service Implementation	100%
	Dec 13, 2012	Workshop at FRIB	
	Dec 31, 2012	Common Services Migration	100%
	Jun 30, 2013	Milestone 1 Tickets	67%
M	Dec 31, 2013	Milestone 2 Tickets	5%

5 SNS AAC 2013 – Accelerator Physics Overview

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF EXCHANGE AND

Python-ORBIT Development and Support *A. Shishlo, J. Holmes, S. Cousineau*

- ORBIT is a high intensity beam simulation code developed at SNS, used around the world (FNAL, CERN, ISIS, J-PARC, GSI, LANL, CSNS, ...)
 - Supported by SNS physics group
 - Being ported to a more modern, more easily maintainable structure (python script interface)
 - Background activity for 3-4 years, past year concerted effort, nearing completion
 - Linac simulation supported !

"Joe Physicist" Assessment

Level	Comparison with old ORBIT	
User only	Easier, more flexible, more powerful	
Python level developer	Same difficulty, more flexible, more powerful	
Core C++ developer	More difficult (more levels of structure)	

DAK RIDGE NATIONAL LABO

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Emphasize Benchmarks Measured Data

Ring Injection Stripping: Excited state H⁰ *M. Plum*

- SNS injection design minimizes impact of excited state losses
 - Large impact on upgrade design
 - But how important is it really need to measure!

0% H⁻ (also 1% of beam missing foil) are transported to injection dump

H0* Loss Measurements:

Difference between 1st foil pass and subsequent passes = excited state loss

Measured loss not severe for baseline, or purposefully high H^{O*} loss
© OAK RIDGE NATIONAL LABORATORY

9 SNS AAC 201 Setups hysics Overview

```
MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY
```

Nonlinear lattices / Integrable Optics, Gaining Community Attention

V. Danilov, S. Nagaitsev, PRSTAB 2010, Selected as one of best papers of 2010

- Avoid resonances allow large tune spread
- In general these are non-trivial solutions, identified a practical implementation
- Proposed electron beam experiment at FNAL: IOTA

High Power "Look-Aheads" Ongoing

AAC 2012: Resume high power beam studies in the ring

June 2012 – RF supported full pulse

- Setup the RF to support the full pulse length
- Plan to try again May 30-31, aim for 1.1 1.2 MW for ~ 1 day

Stripper foil development program M. Plum, et al.

- Foils are fabricated at ORNL using CVD
 - Testing new lithography patterns to reduce foil shaking and curling
 - Testing boron doping to improve foil conductivity
 - New foils in machine used with about 1 month period
- Simulating with beam the 1.4 MW heat load
 - Modeling (Y. Takeda from KEK)
 - E-beam lab setup
- Concerns
 - Foil lifetime increasing powers
 - Shaking and curling / wrinkling

Detailed finite-element foil temperature simulation

AK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Electron-beam foil test stand

Simulated Full Power Foil Heating M. Plum

 By using "sub-optimal" injection painting we increased the foil traversals to simulate increased foil heating expected at 1.4 MW – for 8 hours

Foil image during test Beam power is ~850 kW, equivalent heat load for 1.4 MW

Foil image at 850 kW with nominal painting

Laser Stripping Re-Started (M. Plum's talk)

AAC 2012: Explore ways of bringing more accelerator science and technology graduate students and post-docs to the SNS.

- Successful HEP accelerator R&D grant through the University of Tennessee
 - S. Cousineau is the PI
 - 3 year, \$825 k
 - Post Doc + grad student support
- Demonstrated a 10 ns laser stripping in 2005
- Planning an intermediate 10 μ s demonstration
 - Lattice insert for experiment
 - Beam Studies to produce correct optics needed
 - Laser development efforts (e.g. Fabry-Perot light recycling)

Beam Damper System Studies Z. Xie, C. Deibele

- Damper system may be needed for high intensity applications
- Beam Transfer Function (BTF) measurement
 - Characterize beam response to kick
 - Recently converted to a digital system

Measured BTF Mystery

C:\xz2\Matlab\Vert 6-21-11 Measure\Zaipeng\0211\V\normal_500turns

- Transfer function bifurcation occurs at high intensity ullet
- Not understood

High Intensity Beam Simulations

(R. Potts, S. Cousineau) PhD dissertation project

Performing systematic study of beam evolution versus*:

- Intensity
- Transverse betatron tune
- Initial emittance aspect ratio

8.52. 6.21 Symmetric 7.4miSppp De_Forts_400_8

ORBIT simulation connection with experiment challenging because:

- Measurable profiles don't contain distribution details.
- Evolution sensitive to precise parameter knowledge.
- No analytic theory governing distribution evolution.

Ring High Intensity Effects R. Potts PhD Topic

Interesting space charge phenomena observed at intensities > $1x10^{13}$ ppp.

- Shot to shot variation of transverse profiles (see below).
- Coupling between planes.
- Dynamics sensitive to initial conditions.

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Accelerator Community Involvement (2012-2013) Physics, Instrumentation, Ion Source

- Workshop / Conference Organization
 - Stockli Symposium on Negative Ions Beams and Sources 2012, Workshop on Performance Variations of H- Sources
 - Pelaia: Open XAL workshop
 - Galambos: 2013 Accelerator Applications (session organizer), 2012 LINAC SPC, Convener HEP Snowmass 2013 working group on proton machine capabilities, SPC Tech. and components of ADS
 - Cousineau: ICAP IOC, NAPAC SPC,
 - Plum ICFA HB2012 convener
 - Holmes USPAS organizing committee, ICFA HB2012 convener, IOC CERN Space Charge 2013.
- Beam Measurements
 - Gas luminescence detector development for ESS
 - ITER radiation detector
- Hosted visitors
 - FNAL (LEBT), FNAL (profiles / emittance), J-PARC (foils), ESS (Instrumentation + physics), U- Md (high intensity modeling), CERN (H- injection)

Accelerator Community Involvement (2012-2013) Physics, Instrumentation, Ion Source

Reviews

- Aleksandrov: PAC'13 Scientific Program Committee, IFMIF Beam Diagnostics Design Review, FRIB Beam Diagnostics Design Review, FRIB Independent Readiness Review
- Galambos: ESS TAC5,6 and 7, CSNS TAC, C-ADS TAC, MYRHHA International Design Review, ESS diagnostic review, ESS Accelerator Physics Review, FNAL PXIE review Project-X MAC, HEP General Accelerator R&D review
- Plum: J-PARC ATAC, ORNL enriched stage isotope production facility
- Taught courses
 - Stockli: CERN school, Ion Sources
- Committee Membership
 - Cousineau: APS DPB Executive Committee Member at Large, (2010 2013), PRST-AB editorial board member (2013 - 2016)
 - Galambos: ANS AAD Executive Committee Member (2013 2016)
 - C. Deibele: Editorial board IEEE Microwave Theory & Techniques, IEEE board for PE exams
- Student Mentoring
 - 1 PhD graduated, 3 PhD students ongoing
 - 1 Post-doc
 - 5 Undergrad and high school interns

- Accelerator physics activity still moving forward, even though power ramp-up has stalled
- Important to keep physics staff engaged to enable reaching the short-term 1.4 MW level and longer term 3 MW operation

RFQ Detuning - reprise

- We had 2 earlier RFQ detuning incidents
 - 2003 (cooling) and 2009 (maintenance)
 - Required retuning the RFQ to return to resonance
 - Initiated spare procurement
- There appears to have been another occurrence
 - Systematic reduction of RFQ exit current observed, beginning about 1.5 years ago
 - Comparison of beam current transmission from historical levels showed reduction
 - RFQ Field profile measurements indicate another anomaly
 - Transmission vs. RFQ power also changed from historical measurements
 - But, this time the structure can operate at correct frequency

RFQ Beam Transmission Indicates a Problem *M. Stockli*

- Input current measured by collected charge of fully chopped beam at LEBT exit, exit current measured by current monitor
 - Same technique used in 2010
- Systematic reduction in transmission

RFQ Field Measurement Indicates a Problem

- Clear indication of field tilt from expectation
- At low energy end some non-quadrupole mode?

RFQ Power Scans Indicate a Problem

- We are operating significantly below "transmission saturation" RF power level
 - Resonance control (cooling) cannot support too large an input power
 - Nervousness about too large an increase in power before retune and spare RFQ procurement

RFQ Detuning Summary

- It happened again we are quite concerned
 - RFQ power archive records indicate that it happened during the 2011 summer outage
- We plan to retune the RFQ this summer
- This incident puts more importance on the spare RFQ (see Y. Kang's talk)
- Spare RFQ test plans
 - **RF test: this summer-fall, see Y. Kang's talk**
 - Beam tests: late 2013, 2014, see S. Aleksandrov's talk on test stand plans

