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STS History / Accelerator Upgrade

* Accelerator Power Upgrade Project (PUP)
— CD-0 (double power) Nov. 2004
— CD-1 (energy only) Jan. 2009
— Killed (moved to STS) 2011

» Second Target Station
— Originally did not include accelerator upgrade
— Internal study in 2007 (long pulse)

— CD-0 approved Jan. 2009

 “Costs approximately $800M - $1 500M (a rough order of
magnitude cost range) with a project completion date about 2020”
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FY 2014 / 2015 Activities

- Baseline design established I
— Technical Design Report written

« Scientific community
engagement
— Workshops identifying emerging
scientific challenges that neutrons
address

* Laboratory investment || [

— FY15 LDRD support for next
generation neutron techniques and
“heroic” experiments

« Working towards FY-2017 start
for CD-1 prep
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https://www.dropbox.com/s/gb5phzf356zrcibb/SNS%20
STS%20Report%20%28012215%29 5.pdf?dI=0
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https://www.dropbox.com/s/g5phzf356zrcjbb/SNS STS Report (012215)_5.pdf?dl=0

STS: Optimized for Cold Neutrons / High
Brightness

Target Comparison

le+17

let+16 FTS - Hg
140 cm?
le+15 40 kJ/pulse

let+14

STSc-H, 10 Hz 467 kW
FTSdC-H, 60 Hz2 MW
FTSdC-H,0 60 Hz2 MW

— lHI.-'ll.llcollfilslourcc 815 M.W. s

Peak Brightness (n/cm’/s/st/A)

STS Solid Target

le+9

J STS — W , 30 cm?

0.1 | 10 47 kJ/pulse

Wavelength (A)

* Need high intensity/pulse (500 kW / 10 Hz)

« Compact target design
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Target / Instrument Systems Defined

Metal
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Insert
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Access Pit
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Core Vessel

Removable Utility
Shielding Blocks

Target core vessel

Initial instrument suite proposal

Table 5.1. Initial planning suite of neutron scattering instruments

“Nominal

Be . Mode
]..:em Name Description le(lﬁ)th tnl:mr
5 Versatile instrament designed for studies at the highest
1 Zeemans o onetic fields (infegrated high-field magnet) 60 HICM
5 Kinetics Reflectometer—horizontal sample
2 QIEKR A ptimized for rapid 20 HICM
’HiRes- High Resolution Small'Wide Angle Neutron
3 SWANS Scattering—SANS/diffractometer optimized for length 17 HICM
scales from the molecular to tens of nanometers
VBPR Variable Beam Profile Reflectometer optimized to HPCM:
4 illuminate millimeter-size samples 30 A
Fhix-Optimized Order-Disorder SANS for fast kinetics
s FLOODS 4 out-of-cquilibrium behavior 2540 HPCM-a
Magnetism-Wide and Small Angles with Big
[ M-WASABI Intensity—optimized for complete polarized 3840 HPCM-a
reflectometry (specular, off-specular, GISANS)
Magnetism-Second Target Advanced Reflectomer—
7 M-STAR emized for ic studies of small samples 32 HPCM-a
Spherical Indirect Inelastic Xtal Spectrometer—
8 SPHIINX  optimized for broad-band inelastic measurements of 40 MSDT
small samples
Extreme Multi- Emgy Spectrometer with Xtal
9 XTREME-X stricted to the 45 MSDT
hmmmhlphnﬁbyexﬁmmlplemmmmjs
A hybnid indirect geometry spectrometer coupled with a MSDT
10 JANUS hwauglednemgeonmyspecﬁmopumzedﬂm 40
sitn manipulation of samples
11 TBD TBD MSDT
Broad-range Wide Angle Velocity Selector—an indirect
geometry spectrometer that provides very high
12 BWAVES resolution coupled to a broad dynamic range in energy 16 HPCM-D
transfer
High Energy Resolution Terahertz
13 HERTZ ooldmmchupperspemomwmmnmﬁnlarge 25-30 HPCM-b
samples and relatively high energy resolution
Versatile Diffr: dif i d
14 *VERDI for magnetic structure studies of both powdﬂs and 40-60 HPCM-b
single crystals
Dynamically Polanized crystallography instroment—
15 *DYPOL optimized for study of small hydrogen-containing single 01 HPCM-b
crystals, particularly proteins
Neutron Single Crystal diffractometer—optimized for
16 NeSCry study of small single crystals and high. low-Q resolution 30-50 HPCM-b
with an emphasis on magnefic structure
17 TBD TBD HPCM-c
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Segregated Target / Instrument Buildings

Hydrogen
Utility Service .
. . Utility
Monolith Main B
Ro?m B?y alnl a Vault

Target Hall
Instrument J

Hall \ ‘ "

« Separate function — separate building
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Conceptual Site Layout - 3D
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STS Accelerator Scope:
Double the “power” (intensity/pulse)

First Target  Second Target

Energy / pulse (kJ) 23.3 40 46.6
Beam Energy (GeV) 94 1.3 1.3
Rep rate (Hz) 60 50 10
Average current (mA) 27 33 38
Power (MW) 1.4 2.0** 0.47

* Use beam chopping (average current) to independently throttle FTS / STS power

** Shielding / target system limit, may be possible to increase
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Doubling the Accelerator Intensity
- use operational lessons

1.4 MW Present STS Original STS
Operation Upgrade Upgrade

Energy (GeV) 0.94

Macro-pulse length (ms) 0.97 0.97

RFQ output beam 35 46 55
current (mA)

Macro-pulse un-chopped 0.78 0.82 0.7
fraction

« New approach significantly eases the ion source requirements
— Leverages lessons learned on the way to 1.4 MW

* Need ~ 46 mA out of RFQ, 55 mA into RFQ

— Reduced ion source requirements
— No dual source / hot-spare, magnetic LEBT %OAK RIDGE

National Laboratory
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Primary Accelerator Power Upgrade Areas

Tunnel: fill in empty drift sections with

cryomodules: space for 9
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Extraction: fill in
.. empty space with
‘. kickers

Klystron gallery: fill in
area provided with high
power RF equipment




STS Energy Profile: 7 New Cryomodules

16006
14003

=
> 12002
=
& g00m Eou (MeV)
% 6002 Now STS
c 400B
()]
8 o0 Cryomodule 23 948 970
0 | ' | ' ' Cryomodule 30 1358
o 200 40 60 80 oR 120p]
CavityiNumber? /

/

Need 25 new cavities at 16 MV/m for 1.3 GeV
(“6.25" cryo-modules)

« 1.3 GeV is a fairly hard upper energy limit
— Avoid H- magnetic stripping in existing HEBT line
— Use the last 3 cavities as “spares”
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SCL: What Gradient to Use?

(M. Howell) ' Existing spare cryomodule
12 @\/ performance
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SCL Upgrade Strategy

« Upgrade some existing cavities (plasma process)

- Add 7 new cryo-modules, 4 cavities/cryo-module
— Requires 3 more HVCMs (9+9+10)

— Previous Power Upgrade Project had 9 new cryomodules + 4 new
HVCMs

« Used all 9 available empty slots

“Chases-are-full” problem alleviated with the flexibility of 2
empty slots

Cables in upgrade chases that should be empty
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SCL Energy Upgrade Summary

STS Previous PUP
Plan
Cavity gradient (MV/m) 16 13
Additional cryomodules 7 9

Additional modulators 3

Number of operational 3 4
spare cavities

* Present plan is more aggressive than previous PUP
plan

— See M. Howell + D. Anderson talk
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New Beamline to STS

* Horizontal extraction kick scheme from existing transport line
* Vertical drop of ~ 15 ft
- Large aperture transport line (21 cm quads) % OAK RIDGE
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2013 AAC Recommendation

33. We encourage the laboratory to invest the
appropriate resources Iin accelerator R&D to support
3MW operation for the second target station.

— Design TDR supported
— HVCM and plasma processing supported
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Summary

* We have a conceptual STS design

— Meets the science mission
« High brightness, low rep-rate
* Achievable with low power (500 kW)

— Leverages experience from operation
- Target: move from Hg to solid target
» Accelerator uses existing technologies

— More of the same for SCL
— Stay the path for ion source/LEBT
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Backup
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STS: Beam Loss

* Double the intensity per pulse from present 1.4 MW level
— X 1.38 in energy (0.94 to 1.3 GeV)
— X 1.45 in charge per pulse

* Linac:
— Loss generally proportional to accelerated charge
— Continue effort to increase beam size (decrease intra beam stripping)

* Ring
— Space charge / collective effects (~ n/p?y3)
* Net 20% decrease for STS parameters
— Injection losses will increase by 45%

 Worst case: we can live with 50% increase in beam loss
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