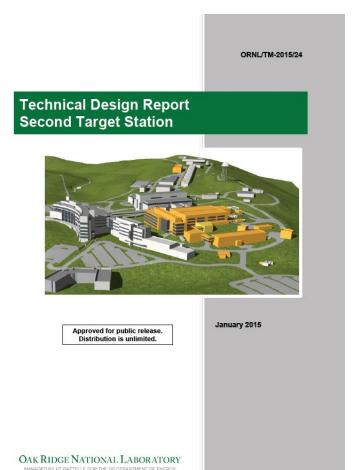

Second Target Station (STS) Plans

J. Galambos

SNS AAC Review

March 24-25, 2015

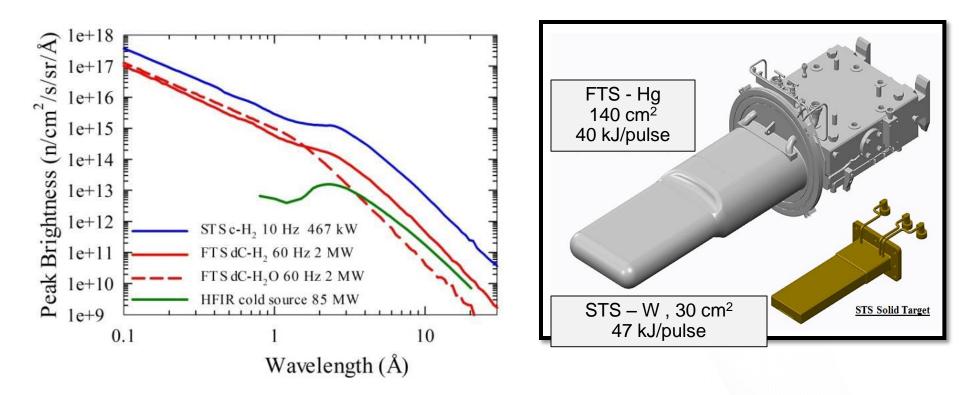
ORNL is managed by UT-Battelle for the US Department of Energy

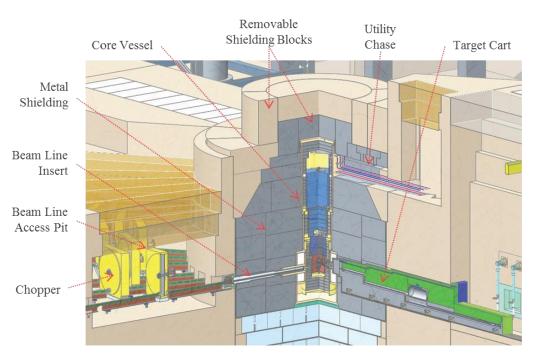

STS History / Accelerator Upgrade

- Accelerator Power Upgrade Project (PUP)
 - CD-0 (double power) Nov. 2004
 - CD-1 (energy only) Jan. 2009
 - Killed (moved to STS) 2011
- Second Target Station
 - Originally did not include accelerator upgrade
 - Internal study in 2007 (long pulse)
 - CD-0 approved Jan. 2009
 - "Costs approximately \$800M \$1 500M (a rough order of magnitude cost range) with a project completion date about 2020"

FY 2014 / 2015 Activities

- Baseline design established
 - Technical Design Report written
- Scientific community engagement
 - Workshops identifying emerging scientific challenges that neutrons address
- Laboratory investment
 - FY15 LDRD support for next generation neutron techniques and "heroic" experiments
- Working towards FY-2017 start for CD-1 prep

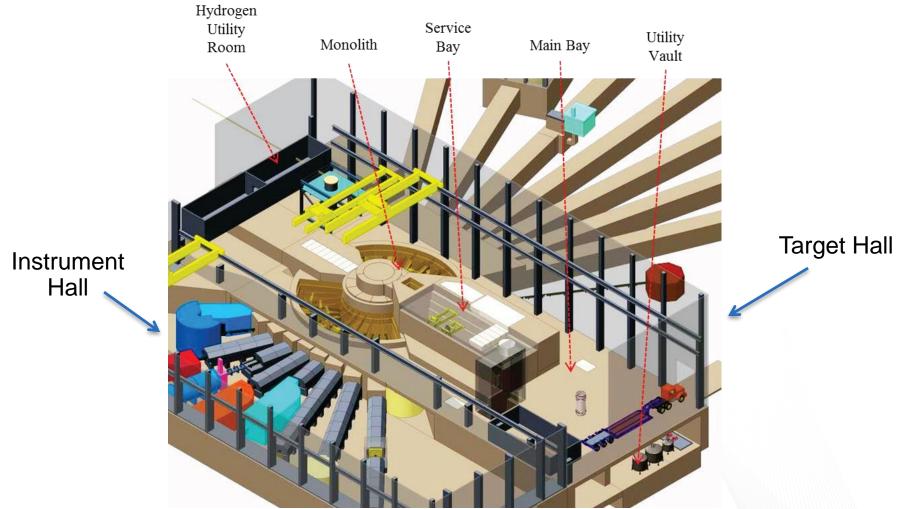

https://www.dropbox.com/s/g5phzf356zrcjbb/SNS%20 STS%20Report%20%28012215%29_5.pdf?dl=0


STS: Optimized for Cold Neutrons / High Brightness

Target Comparison

- Need high intensity/pulse (500 kW / 10 Hz)
- Compact target design

Target / Instrument Systems Defined


Target core vessel

Initial instrument suite proposal

Table 5.1. Initial planning suite of neutron scattering instruments

Beam line	Name	Description	"Nominal length (m)	Moderator type
1	^b Zeemans	Versatile instrument designed for studies at the highest magnetic fields (integrated high-field magnet)	60	HICM
2	^b QIKR	Kinetics Reflectometer—horizontal sample reflectometer optimized for rapid measurements	20	HICM
3	^b HiRes- SWANS	High Resolution Small/Wide Angle Neutron Scattering—SANS/diffractometer optimized for length scales from the molecular to tens of nanometers	17	HICM
4	VBPR	Variable Beam Profile Reflectometer optimized to illuminate millimeter-size samples	30	HPCM-a
5	FLOODS	Flux-Optimized Order-Disorder SANS for fast kinetics and out-of-equilibrium behavior	25-40	HPCM-a
6	M-WASABI	Magnetism-Wide and Small Angles with Big Intensity—optimized for complete polarized reflectometry (specular, off-specular, GISANS)	38-40	HPCM-a
7	M-STAR	Magnetism-Second Target Advanced Reflectomer- optimized for magnetic studies of small samples	32	HPCM-a
8	SPHIINX	Spherical Indirect Inelastic Xtal Spectrometer— optimized for broad-band inelastic measurements of small samples	40	MSDT
9	XTREME-X	Extreme Multi-Energy Spectrometer with Xtal analyzers—optimized for measurements restricted to the horizontal plane by extreme sample environments	45	MSDT
10	JANUS	A hybrid indirect geometry spectrometer coupled with a low-angle direct geometry spectrometer optimized for inelastic measurements of irreversible phenomena and in situ manipulation of samples	40	MSDT
11	TBD		TBD	MSDT
12	BWAVES	Broad-range Wide Angle Velocity Selector—an indirect geometry spectrometer that provides very high resolution coupled to a broad dynamic range in energy transfer	16	HPCM-b
13	HERTZ	High Energy Resolution Terahertz spectrometer —a cold neutron chopper spectrometer optimized for large samples and relatively high energy resolution	25–30	HPCM-b
14	^b VERDI	Versatile Diffractometer—a diffractometer optimized for magnetic structure studies of both powders and single crystals	4060	HPCM-b
15	^b DYPOL	Dynamically Polarized crystallography instrument— optimized for study of small hydrogen-containing single crystals, particularly proteins	91	HPCM-b
16	NeSCry	Neutron Single Crystal diffractometer—optimized for study of small single crystals and high, low-Q resolution with an emphasis on magnetic structure	30–50	HPCM-b
17	TBD	·····	TBD	HPCM-c

Segregated Target / Instrument Buildings

• Separate function – separate building

Conceptual Site Layout – 3D

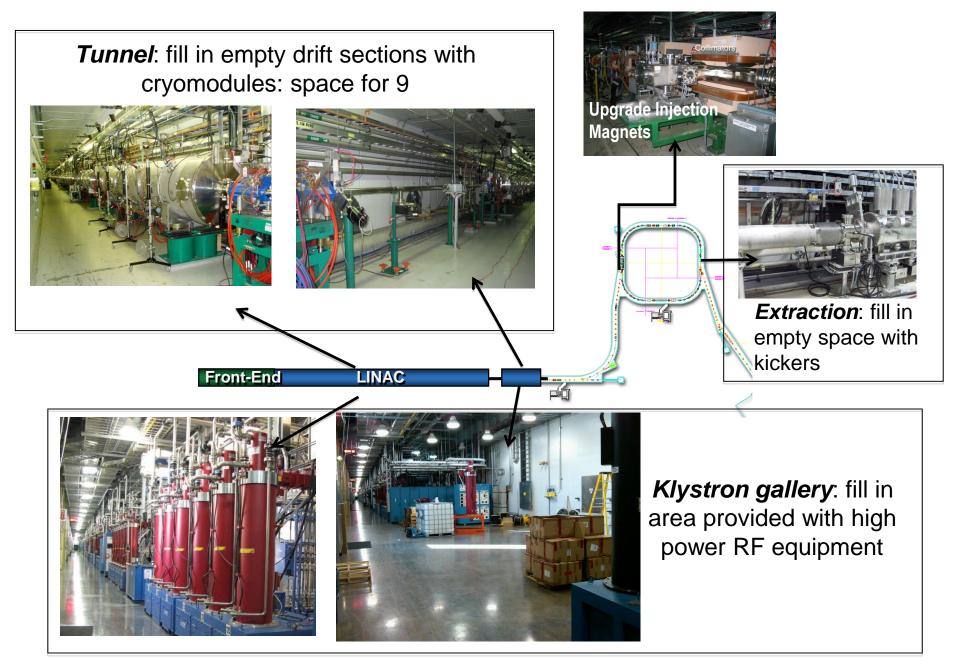
STS Accelerator Scope: *Double the "power" (intensity/pulse)*

	1.4 MW	STS	
		First Target	Second Target
Energy / pulse (kJ)	23.3	40	46.6
Beam Energy (GeV)	.94	1.3	1.3
Rep rate (Hz)	60	50	10
Average current (mA)	27	33	38
Power (MW)	1.4	2.0**	0.47

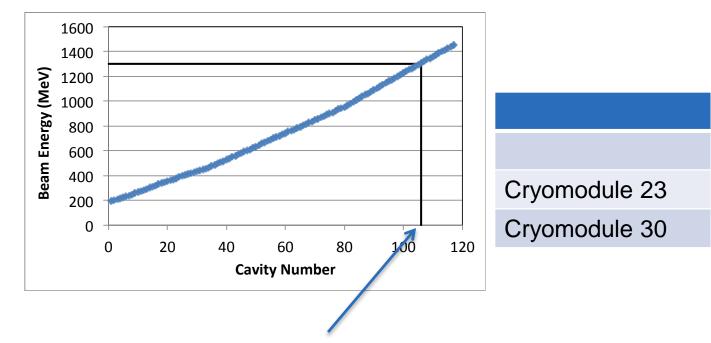
* Use beam chopping (average current) to independently throttle FTS / STS power

** Shielding / target system limit, may be possible to increase

Doubling the Accelerator Intensity - *use operational lessons*


	1.4 MW Operation	Present STS Upgrade	Original STS Upgrade
Energy (GeV)	0.94	1.3	1.3
Macro-pulse length (ms)	0.97	0.97	1
RFQ output beam current (mA)	35	46	55
Macro-pulse un-chopped fraction	0.78	0.82	0.7

• New approach significantly eases the ion source requirements


- Leverages lessons learned on the way to 1.4 MW
- Need ~ 46 mA out of RFQ, 55 mA into RFQ
 - Reduced ion source requirements
 - No dual source / hot-spare, magnetic LEBT

Primary Accelerator Power Upgrade Areas

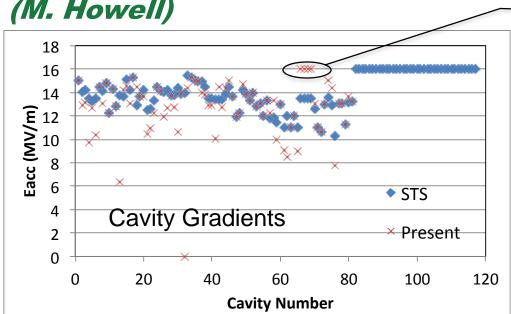
STS Energy Profile: 7 New Cryomodules

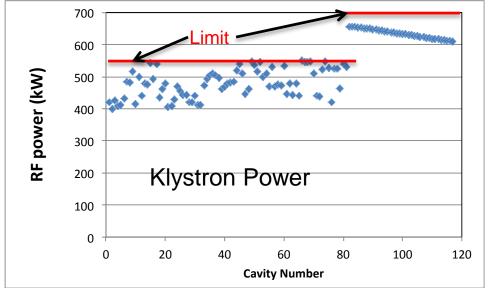
Need 25 new cavities at 16 MV/m for 1.3 GeV ("6.25" cryo-modules)

- 1.3 GeV is a fairly hard upper energy limit
 - Avoid H⁻ magnetic stripping in existing HEBT line
 - Use the last 3 cavities as "spares"

E_{out} (MeV)

STS


970


1358

Now

948

SCL: What Gradient to Use?

Existing spare cryomodule performance

Gradients are reasonable

- 16 MV/m for new CMs
- Same as spare CM we just built
- Higher than 13 MV/m for PUP
- ESS: 18.5 MV/m
- LCLS-II: 16 MV/m

RF power

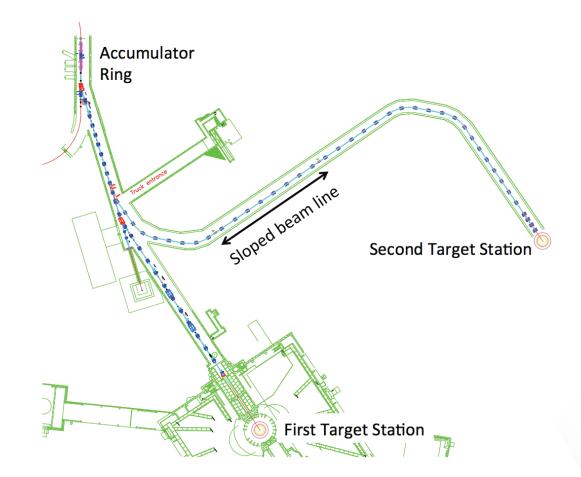
- Existing cryomodules limited to 550 kW/ klystron
- New ones will be 700 kW capable

SCL Upgrade Strategy

- Upgrade some existing cavities (plasma process)
- Add 7 new cryo-modules, 4 cavities/cryo-module
 - Requires 3 more HVCMs (9+9+10)
 - Previous Power Upgrade Project had 9 new cryomodules + 4 new HVCMs
 - Used all 9 available empty slots
- "Chases-are-full" problem alleviated with the flexibility of 2 empty slots

Cables in upgrade chases that should be empty

SCL Energy Upgrade Summary


	STS	Previous PUP Plan
Cavity gradient (MV/m)	16	13
Additional cryomodules	7	9
Additional modulators	3	4
Number of operational spare cavities	3	4

 Present plan is more aggressive than previous PUP plan

OGE HIGH FLUX

- See M. Howell + D. Anderson talk

New Beamline to STS

- Horizontal extraction kick scheme from existing transport line
- Vertical drop of ~ 15 ft
- Large aperture transport line (21 cm quads)

15 STS Overview

2013 AAC Recommendation

33. We encourage the laboratory to invest the appropriate resources in accelerator R&D to support 3MW operation for the second target station.

- Design TDR supported
- HVCM and plasma processing supported

Summary

- We have a conceptual STS design
 - Meets the science mission
 - High brightness, low rep-rate
 - Achievable with low power (500 kW)
 - Leverages experience from operation
 - Target: move from Hg to solid target
 - Accelerator uses existing technologies
 - More of the same for SCL
 - Stay the path for ion source/LEBT

Backup

STS: Beam Loss

- Double the intensity per pulse from present 1.4 MW level
 - X 1.38 in energy (0.94 to 1.3 GeV)
 - X 1.45 in charge per pulse
- Linac:
 - Loss generally proportional to accelerated charge
 - Continue effort to increase beam size (decrease intra beam stripping)
- Ring
 - Space charge / collective effects (~ n/ $\beta^2\gamma^3$)
 - Net 20% decrease for STS parameters
 - Injection losses will increase by 45%
- Worst case: we can live with 50% increase in beam loss

