

WAND - US/JAPAN WIDE-ANGLE NEUTRON DIFFRACTOMETER

The HFIR HB-2C WAND instrument was designed to provide two specialized datacollection capabilities: (1) fast measurements of medium-resolution powder-diffraction patterns and (2) measurements of diffuse scattering in single crystals. For these purposes, this instrument is equipped with a curved, one-dimensional ³He position-sensitive detector covering 125° of the scattering angle with the focal distance of 71 cm. This enables measurements of single-crystal diffraction patterns in a short time over a wide range of the reciprocal space, as well as performance of time-resolved experiments for structural transformations having short time constants. The WAND detector (ORDELA

INSTRUMENT

HIGH FLUX ISOTOPE REACTOR

E

1410N) is a multianode type (624 anodes and a 0.2° pitch) ³He gas counter specially designed for this instrument. This detector has an intrinsic angular resolution of 0.25° and a maximum counting rate per anode of 10^5 counts/s. The vertical focussing Ge monochromator provides high flux at the sample position which allows fast parametric measurements. The full range of HFIR's sample environment can be used, including cryofurnaces (4-800 K), furnaces (to 1800 K),

K), furnaces (to 1800 K), cryostats (to 0.06 K), and cryomagnets (to 7 T). The high flux at the sample position also allows high pressure experiments with clamp cells up to 6 GPa.

APPLICATIONS

WAND is ideal for the study of time-resolved phenomena and for the study of diffuse scattering in single crystals. Research performed at WAND includes studies of the growth of ferroelectric ice-XI, hole and charge ordering in colossal magnetoresistance materials, and studies of magnetic structures and correlations in low-dimensional magnetic systems and other magnetic materials.

WAND is operated in collaboration with the Japan Atomic Energy Research Institute under the US/Japan Cooperative Program on Neutron Scattering Research.

FOR MORE INFORMATION, CONTACT Instrument Scientist: Matthias Frontzek, frontzekmd@ornl.gov, 865.574.2478 neutrons.ornl.gov/hb2c

SPECIFICATIONS

Beam spectrum	Thermal
Monochro- mator	Vertically focused hot pressed Ge
Monochro- mator angle	$2\Theta_{\rm M} = 51.5^{\circ}$
Wavelength	λ = 1.5 Å (Ge 113) 0.95 Å (Ge 115)
Scattering angles	0° < 2Θ < 156°
Collima- tions	Oscillating collimator ra- dial before the detector
Detector	Multiwire (624 anodes, 0.2° pitch) He ³ curved PSD
Resolution	2 mm spatial resolution

Status: Available to users

June 2016