AAC - HEBT/Ring/RTBT Overview

Jan. 22 – 24, 2008 by Mike Plum Ring Area Manager

Accumulator Ring and Transport Lines

Circumference Energy f_{rev} Q_x, Q_y Accum turns Final Intensity Peak Current

Accomplishments in HEBT/Ring/RTBT

- Except for RTBT optics issue, HEBT/Ring/RTBT on track for power ramp up
- Activation levels are presently acceptable and beam loss per Coulomb continues to drop (Galambos)
- Record beam power (213 kW)
- Record beam charge (1.08x10¹⁴ ppp)
- Beta functions measured and found to be OK (Holmes)
- Transverse coupling measured and corrected (Holmes)
- IDmp problem being managed*
- Method of single minipulse profile reconstruction* (Holmes)
- Identified source of RTBT cross-plane coupling (ExSptm)*
- New stripper foil technology is working well*
- Instability thresholds measured (3 types) (Danilov)

Primary issues in the HEBT/Ring/RTBT

- Injection dump poor beam transmission
- Cross plane coupling in the RTBT
- Beam optics control in the RTBT and peak density on the proton beam window
- Activation hot spots

Other issues in the HEBT / Ring / RTBT

- Transverse matching from SCL to HEBT to Ring
- Secondary stripper foil is thicker than we'd like
- Lack of diagnostics
 - Pinger
 - Transverse profile monitor
 - Target profile monitor
 - Convoy electron collector IR video
 - Electron cloud detector
 - Dipole and quadrupole kicker and pickup

What stands between us and 1.5 MW?

- Activation per Coulomb needs to come down about a factor of 2 to 3 near the stripper foil. Also have hot spots at beginning of HEBT arc, upstream end of Ikick V03.
- IDmp waste beam transmission and waste beam delivery to center of dump
- Cut peak beam density on proton beam window in half
- Errant beam controls on injection and extraction kickers
- Functional MEBT chopper
- Would like to reduce cross-plane coupling in RTBT
- Would like to check convoy electron catcher
- Would like to replace hoses on rad-hard quads with ceramics

Modifications since start of commissioning

- Wider, thinner secondary stripper foils (July/06 May/07)
- Wider, taller, thicker primary stripper foils (Nov/06)
- Chicane magnet #4 8 cm shift beam left (May/07)
- C-magnet in IDmp beam line (May/07)
- BPM, WS, nano-Coulomb detector in IDmp beam line (May/07)
- Errant beam controls for RTBT magnets and RTBT BLMs (Jul/07 ??)
- View screen in IDmp beam line (Oct/07)
- Mu-metal added in 3 locations in injection straight (Oct/07)
- Physics software applications and EPICS improvements
- All Griswold water flow control valves removed from Ring (2006 07)
- Replaced ceramic breaks on rad-hard RTBT quad water cooling (May/07)

Modifications now in progress

- Injection dump septum magnet with increased aperture
- New primary and secondary stripper foil mechanisms and vacuum chambers
- Errant beam controls for injection and extraction kickers
- Remote handling vacuum clamps for collimators
- Beam in gap and pinger systems
- Electron beam and gas ionization profile monitors for Ring
- View screen in RTBT
- Convoy electron collector IR video
- RTBT harp actuator
- Beam profile on target system

Issue: Injection dump beam line

- In 2000 a design change was made in the injection chicane magnets. This change caused a 14 mm offset in the closed orbit and prevented waste beam transmission to the dump.
- We have adjusted the chicane magnet bend angles to give good injection into the ring
- But we did not have good transmission or control of the H⁰ and H⁻ waste beams.
- Chicane #4 also caused large vertical deflection of the H⁻ waste beam
- Re-design of the injection dump beam line is in progress

Functions of chicane magnets

- Closed orbit bump of about 100 mm
- Merge H⁻ and circulating beams with zero relative angle
- Place foil in 2.5 kG field and keep chicane #3 peak field <2.4 kG for H⁰ excited states
- Field tilt [arctan(By/Bz)] >65 mrad to keep electrons off foil
- Funnel stripped electrons down to electron catcher

To Injection Dump

for the Department of Energy

Short and mid-term IDmp modifications

Injection dump beam line plan

- Chicane #4 shifted 8 cm beam left, and the Cmagnet, have made big improvements
- The new diagnostics have been a big help to improve our understanding of the beam line.
- We have empirically evolved to an improved tune for the ring injection, with the injection point about 1 cm beam left of design, but we still need more improvements
- Install spare IDmp septum magnet, modified to have larger aperture, in February 2008
- May need to add a quadrupole
 - ORBIT simulations now in progress
 - A spare 30Q44 or 30Q58 could work nicely

Issue: cross plane coupling in the RTBT

- Early measurements with the target view screen showed tilted beam at the target
- Wire scanners in the RTBT consistently showed strange profiles that could not be explained with simulations
- Vertical extraction kickers cause large horizontal oscillations in the RTBT

- Single minipulse profile reconstruction (new technique) conclusively showed tilted beam in the RTBT
- The source of the coupling has been narrowed down to a large skew quad component inside the extraction Lambertson septum magnet

Beam profiles in the RTBT

For no painting (flat-topped kickers), expected hollow profiles with independent control of x and y planes. One wire scanner for three different horizontal injection kicker amplitudes is shown.

AAC January 2008

Courtesy S. Cousineau

for the Department of Energy

14 Managed by UT-Battelle

Orbit Difference by Extraction kicker on & off

All Ext kickers affect beam both in X and Y planes

This demonstrates:

• A source of coupling exists

• The source is unlikely to be one or two extraction kickers (all kickers produce same H wave)

Courtesy D. Jeon

BPM Beam Profile Measurement in the RTBT

Procedure for creating a "PDM" ("Pelaia Distribution Monitor"):

- 1) Setup flat top injection kickers
- 2) Set chromaticity to zero using sextupoles to suppress decoherence
- 3) Inject single mini-pulses and scan through the extraction kicker delays (storage time) by integer turns
- 4) For each delay setting, record the beam positions at the RTBT BPMs
- 5) For each BPM, aggregate the mini-pulse beam position data over the delay settings to reconstruct a macro-pulse beam distribution. In other words, plot all of the BPM measurements together to reconstruct the x vs y distribution.

Single minipulse profile reconstruction

- Very little tilt seen in Ring
- Large tilt seen in RTBT

Coupling source localized to extraction septum magnet

T. Pelaia & S. Cousineau

OAK RIDGE NATIO U. S. DEPARTMI Accelerator Performance

x (mm)

Plan for cross plane coupling in RTBT

- ORBIT simulations now in progress to determine how many skew quads are needed, where they should be located, and how strong they need to be
- Add skew quads as necessary. This will probably take 1 to 1.5 years.
- In parallel we are modifying our physics apps to include cross plane coupling. We may be able to improve the RTBT optics.

Beam size, density, and position on target and Proton Beam Window

Beam size measurement on target and PBW

- The RMS of the wires and harp are found by statistical RMS or double Gaussian fits.
- The online model is used to match the envelope to the RMS data.
- The match gives a prediction of beam size on target (we include window scattering).
- Benchmark of the application gave agreement within 10% of viewscreen measurement.

Peak density measurement on target and PBW

Harp	profile is fit with a 2D,	Diagnostics RTBT	Harp30 Vertical	Diagonal	Till Transferrer	
douk	DIEX New Target Beam Parameters				Smooth Off	
	Parameter			Value		
Tho	Time Stamp	Aug 07, 2007 1	12:17:56			
	Badge Number	747192				
harn	Beam Energy (MeV)	885				
narp	Protons Per Pulse (protons/pulse)	3.57E13				
and	RT Kep Kate (HZ)	1.0				
ana	 Peak Target Proton Density (protons/mm^2/pulse) Deak Deam Window Proton Density (protons/mm^2/pulse) 	4.07E9				
	Peak Beam window Proton Density (protons/mm^2/puise)	7.90E9				
Peak	RMS width on Harp (mm)	17.6				
i cur	RMS Width on Target (mm)	51.8				
extra	RMS Height on Target (mm)	15.8				
•///	Horizontal Center on Target (mm)	0.5				
and	Performance Contraction (mm)	-1.0				
	Comment	New mid-produ	uction tune			
enve						
				Cancel	Reset	Publish

Issue: peak density on target and PBW

- The measured peak density on the target has, until recently, been ~3x higher than expected
- This has caused the beam power at 30 Hz to be limited to ~160 kW.
- The measured peak density at the proton beam window was also ~3x higher than expected
- In early January 2008 the cause was finally traced to swapped vertical and diagonal profiles on the RTBT harp
- Measured peak density on target is now fine, but peak density at PBW is still ~2x higher than expected

Plan for peak density control

- Develop ability to control RTBT optics in a predictable and reproducible fashion
 - May require correction of cross-coupled beam
 - May require improved physics model of RTBT that includes cross coupling
- Adjust optics to reduce peak density at PBW
- Check when get the target profile monitor system working (see McManamy talk)

Target beam position measurement

- Prior to November 2007 we had been using the RTBT BPMs to extrapolate the beam position on target
 - Tested using archived target view screen data
 - Two different methods developed, but each needed arbitrary scale factors and offsets
 - When BPMs indicated beam centered on target, PBW halo thermocouples indicated off center

Target beam position measurement cont.

- In November 2007 we began using PBW halo thermocouples to center the beam
- We believe this is more accurate, although lower resolution
- Better to be approximately correct than exactly wrong
- A new beam imaging system is being developed for the target (see McManamy talk)
- We will check our target centering when that system is installed

Status of the primary stripper foils

- Diamond foil development program started at ORNL in 2001
- Foils tested at PSR, BNL, FNAL, KEK, RIKEN, TIT
 - PSR tests are the most relevant to SNS
 - Show that diamond foils last about same time as PSR-style, maybe a bit longer, but fail under extreme conditions (e.g. PSR to WNR mode)

26 Managed by UT-Battelle for the Department of Energy

Status of the primary stripper foils cont.

- Diamond foils appear to be the best option for SNS
 - Although we are still considering PSR-style and HBC foils
- Per pulse beam intensity on foil is now ~28% of 1.44 MW design

160 kW, 30 Hz, 4/Jan/08

Status of the primary stripper foils cont.

- No foil failures to date for production conditions, although 1 foil was removed Oct/07 with a curled corner
- Integrated injected charge delivered to target was 312 μC

Foil #601, from position #6, removed 29/Oct/07. Curl is toward upstream.

Status of the primary stripper foils cont.

- We're building an electron beam foil test facility
 - Estimate that we need 1.6 mA/mm² of 30 keV electrons to simulate the 1.4 MW, 1 GeV case
 - Purchase in progress for a 30 keV, 5 mA electron gun with a 1 mm spot size
 - Optical pyrometry system is also planned
 - The system should be assembled by the fall of 2008

Customized version of this EMG-4212 gun

Status of the secondary stripper foils

- Started with 25 mg/cm² carboncarbon foil
- Not wide enough, so developed a two-part swinging mechanism. This will eventually be replaced.
- Much thicker than required for stripping
 - Mechanically robust, but causes excessive scattering & beam loss, and may get too hot
- We have changed vendors, and we are now using 18 mg/cm² carboncarbon foils
- We are searching for a 1 mg/cm² solution

Summary

- HEBT / Ring / RTBT are on track for the power ramp up
- We are aggressively addressing issues with
 - Injection dump waste beam transport
 - Cross plane coupling in RTBT
 - Beam density on proton beam window
 - Beam loss reduction
- Stripper foil technology is continuing to advance
 - Diamond foils are working well for us

• Backup slides

Reason for shorter foils

Foil #601, now installed in pos'n #6, in use since Nov/06

Foil #648, now installed in pos'n #9

Photos by Chris Luck

Primary foil size evolution

SNS Diamond Stripping Foils

Drawing from R. Shaw

Secondary stripper foil

Used Jun/07 – ??? Two-part hinged foil, thinner. ?? mg/cm²

Images from K. Potter / J. Safieh

New injection dump beam line diagnostics

Chicane bend angles

TN76: 42 mrad Deliv: 42 mrad Jeff: 42 mrad

TN76: 46.2 mrad TN76: 42 mrad Deliv: 53.1 mrad Deliv: 35.6 mrad TN76: 46.2 mrad Jeff: 53.1 mrad Jeff: 28.3 mrad Deliv: 46.2 mrad Jeff: 39.4 mrad

H⁰ and H⁻ beams exiting chicane #4

Recap from September AP Talk

for the Department of Energy

National Laboratory

Mini-pulse Motion in the Ring

If we don't paint, then each mini-pulse enters the ring with the same initial position and momentum and experiences the same optics.

- In the absence of decoherence and collective effects, turn by turn motion of a mini-pulse is well defined and varies predictably with ring tune
- For cases with no injection painting, the orbit of each successive minipulse is the same as the previous one shifted in phase by one turn

A macro-pulse is an aggregate of minipulses injected sequentially.

• We can measure the macropulse all at once – as the harp does – or we can measure each piece separately and plot them together at the end.

Target Beam Position Prediction

• We use the RTBT BPMs downstream of DH13 to fit the beam trajectory and predict the beam position on the target.

• Method requires slope and offset to match VS data taken in August, 2006.

Beam profile on the target

- A temporary view screen mounted to the face of the mercury spallation target provided very useful beam position and distribution information up through August 2006
- The beam profile on the target appears to have a tilt of about 3°, possibly due to transverse coupling in the beam transport line

Beam profile for highest intensity pulse on target to date (5.3x10¹³ ppp)

