Course Outlines

Instructors: C. Broholm, Johns Hopkins University (<u>broholm@jhu.edu</u>), T. Egami, University of Tennessee (<u>egami@utk.edu</u>). S.-H. Lee, University of Virginia, Y.-S. Lee, Massachusetts Institute of Technology, S. Nagler, Oak Ridge National Laboratory, R. Pynn, Indiana University, and S. K. Sinha, University of California, San Diego. The course coordinator is Meiyun Chang-Smith (<u>changsmithm@ornl.gov</u>).

Target Audience: Graduate Students and postdocs in the fields of Condensed Matter Physics and Materials Science. If you are interested in obtaining credits for this course and you are not at JHU, UTK, UVA, MIT, IU, or UCSD, have your professor contact Meiyun Chang-Smith.

Lectures: This course will be taught from the lecturers institutions and will be available on-line in real time and through web-casting. There will be two 75-minute lectures weekly from 4 to 5:15 pm (Eastern) for 13 weeks starting Tuesday 9/4/2012 and ending Thursday 12/7/2012.

Student Presentations: Each week a student at each participating institution will select a neutron scattering paper and present it to their class. These presentations will be recorded and made available to the full class via the class web site. All participants are encouraged to read the papers and watch the corresponding presentations.

Homework: Weekly assignments will be posted online and will be graded locally.

Technology: To participate in this course *minimally*, all you need is a web browser. For full two way communication and participation in real time with the lectures, please contact Meiyun Chang-Smith for further information.

Prerequisites: Quantum Mechanics, Statistical Physics, and Condensed Matter Physics at the graduate level.

Literature: Some Lecture notes will be provided. There will be reading assignments from the following books listed in order of importance for this course

- [FMS] *Neutron Scattering in Condensed Matter Physics*, A. Furrer, J. Mesot, and T. Strässle, World Scientific (2009).
- [GLS] Introduction to the Theory of Thermal Neutron Scattering, G. L. Squires, Cambridge University Press (1978).
- **[VFS]** *Neutron Optics: an introduction to the theory of neutron optical phenomena and their applications*, Varley F. Sears, Oxford University Press (1989).
- **[SWL]** *Theory of Thermal Neutron Scattering*, S. W. Lovesey, Clarendon Press (1984).

Week	Subject	Lecturer
Lecture 1	Preliminaries	C Broholm
(Tue 9/4)	Periodic solids	
	Neutron properties	
Lecture 2	• The scattering cross section	
(Thu 9/6)	• Fermi pseudo-potential	
	• Partial wave scattering theory	
Lecture 3	Theory of elastic neutron scattering	T Egami
(Tue 9/11)	Born approximation	
	• Debye-Waller factor	
Lecture 4	• From cross section to structure factor	
(Thu 9/13)	Small Angle Neutron Scattering	
	• Reflectometry	
Lecture 5	Theory of inelastic neutron scattering	C Broholm
(Tue 9/18)	• Fermi's golden rule	
	Heisenberg picture	
Lecture 6	Phonon expansion	
(Thu 9/20)		
Lecture 7	Magnetic neutrons scattering	C Broholm
(Tue 9/25)	• Dipole interactions	
	• Elastic & inelastic magnetic scattering	
(Lecture 8 $(\text{Thus } 0/27)$	• Spin-wave excitations	
(1 nu 9/27)	Neutron sources and instrumentation	S Maglar
(Tue 10/2)	Spallation and fission sources	5 Magiel
(10010/2)	 Spanation and fission sources Guides & Shielding 	
Lecture 10	 Outdes & Sinclung TOE and crystal managhromation 	
(Thu 10/4)	Neutron detection	
()	Archetynical instruments	
Lecture 11	Archetypical instruments Polarized Neutrons	R Pynn
(Tue 10/9)	Theory of polarized scattering	IX I yiiii
(140 10/2)	Polarized beam techniques	
Lecture 12	 Polarized diffraction 	
(Thu 10/11)	Polarized SANS	
	Polarized of fito	
Lecture 13	Larmor labeling techniques	R Pvnn
(Tue $10/16$)	Spin echo theory	
(Zero field spin echo	
Lecture 14	Spin-echo angular resolution	
(Thu 10/18)	Spin cono unguna roboration	

Syllabus

Lecture 15	Structure Determination	T Egami
(Tue 10/23)	• Powder diffraction (Rietveld method)	
	• Single crystal analysis	
Lecture 16	• Local structure from PDF analysis	
(Thu 10/25)		
Lecture 17	Surfaces and interfaces	S Sinha
(Tue 10/30)	Specular reflection	
	Off-specular reflection	
Lecture 18	Grazing incidence scattering	
(Thu 11/1)		
Lecture 19	Magnetic Structure Determination	SH. Lee
(Tue $11/6$)	• Group theory survival manual	
T (D D D	Magnetic space groups	
Lecture 20	Relevant software	
(1hu 11/8)	• Examples	
Lecture 21	Phonons	T Egami
(Tue 11/13)	Phonons multi-atom basis	
	Incoherent approximation	
Lecture 22	• Electron phonon interactions	
(Thu 11/15)	• Soft modes	
	Relaxor ferro-electrics	
11/19	Thanksgiving Break	
Lecture 23	Magnetic Excitations	YS. Lee
(Tue 11/27)	Correlation functions	
	Crystal field excitations	
Lecture 24	Magnons and spinons	
(Thu 11/29)	• Spinons	
	• Spin fluctuations in metals	
Lecture 25	Critical Phenomena	YS. Lee
(Tue 12/4)	Synopsis of critical phenomena	
	• Experimental challenges	
Lecture 26	• Probing thermal criticality	
(Thu 12/6)	Probing quantum criticality	