

Single Crystal Diffraction: The Definitive Structural Technique

Christine M. Beavers 18th National School on Neutron & X-ray Scattering August 2nd, 2016

the branch of science dealing with the formation and properties of crystals

What is a Crystal?

A crystal is a periodic arrangement of matter

What is a Crystal?

- A Crystal is a three-dimensional repeating array of atoms or molecules.
- In this example, our molecule is going to be in a shoebox, for simplicity.

ALS From Shoeboxes to Unit Cells

The dimensions of the Unit Cell are an identifying feature for a specific crystal!Advanced Light Source
An Office of Science User FacilityThis slide courtesy of Mark Warren, Diamond Light SourceImage: Constraint of Science User Facility

Crystal Selection #LifeGoals

Nice crystals are more likely to have nice diffraction

ALS

Indexing

a=12.31Å, α =90.00°, V=1863Å³ b=12.31Å, β =90.00°, Cubic I c=12.31Å, γ =90.00°

✓	Unit cell			
	a [Å]	12.3052	±	0.0008
	Ь [Å]	12.3052		
	c [Å]	12.3052		
	α[*]	90.00		
	β[*]	90.00		
	ү [*]	90.00		
l	V [ų]	1863.2	±	0.4
	Domain translation			
	x [mm]	0.04		
	y [mm]	-0.02		

ALS

Data Integration

ALS **Absorption Correction** Overall scale and R(int) variations for Test Normalized Scale Factor 1.4 .2 MM 0.8-0.6 40-Smoothed R(int)% 35**-**30-25-20-15-10-

5-0-

ALS Space Group Determination

3.1. SPACE-GROUP DETERMINATION AND DIFFRACTION SYMBOLS

Table 3.1.4.1. Reflection conditions, diffraction symbols and possible space groups (cont.)

ORTHORHOMBIC, Laue class mmm (2/m 2/m 2/m) (cont.)

		Colostano mo	Alex Martin	1 28 5			a manager	Point group		
hkl	Okl	hOl	hkO	h00	0k0	001	Extinction symbol	222	mm2 m2m 2mm	mmm
	k+l	1	k	1 1 1 3	k	1	Pncb			Pncb (50)
and a second	k+l	1	h+k	h	k	1	Pncn		No.	Pncn (52)
and and	k+l	h+l	Mar all all all all	h	k	1	Pnn –		Pnn2 (34)	Pnnm (58)
A CANTORNAL	k+l	h+l	h	h	k	1	Pnna	1.23 4.		Pnna (52)
	k+l	h+l	k	h	k	1	Pnnb			Pnnb (52
	k+l	h+l	h+k	h	k	1	Pnnn		A walk	Pnnn (4
h + k	k	h	h+k	h	k	or i Bassi	C	C222 (21)	Cmm2 (35) Cmmm
			E. C. M. M. C.		12	1. 1. 2.	in the second		Cm2m (38	6)
	1 10 march 1		1 set alle alle is	1.2	1 192		A ASSESS	A State A	C2mm (38	3)
1 4	k	h	h+k	h	k	1	$C2_1$	$C222_1$ (20)	is the second second	
+ K		h	hk	h	k	1 1 1 1 1	C(ab)		Cm2e (39	9) Cmm
+ K	K	n	1, 1						C2me (3	9)
CAR PROPERTY	1.	1.1	h + h	h	k	1	C-c-	En la	Cmc21	(36) Cmc
+k	k	h, l	$n + \kappa$	n	~	ľ			C2cm (40)
	man Kr.								Carl	
- k	k	h, l	h, k	h	k	11	C-c(ab)))	C2Ce (4	

(59) (53) (62) 58)

ALS Electron Density from Diffraction

More Resources!!!

Books

ALS

- Werner Massa

 ISBN-13: 978-3
 540206446
- Stout & Jensen
 - ISBN-13: 978-047160711 3

Internet

- X-ray Forum
 - www.xrayforum.co.uk/
- IUCr Forum
 - forums.iucr.org
- CCP4
 - http://www.ccp4.ac.uk

Small Molecule Crystallography at a Synchrotron or

What can you do with more flux?

What can you do with more flux?

Contents

- Why do crystals diffract poorly?
- What can we do to them to make them diffract poorly?
- What can we learn from poorly diffracting crystals?
- What do synchrotrons have to do with all this?

ALS The Spectrum of Crystallinity

ALS The Spectrum of Crystallinity

- Good Crystals
 - Diffract kinematically(Bragg), due to mosaicity, but still have good long range order

0 0 0 0 0 0 0	000000000	00000000	0-0-0-0-0-0	0000000
<u> </u>	00-00-00-00-00	000000000	0 0 0 0 0 0 0 0	000000000
<u> </u>	00 00 0 0 0 00 00 00	00000000	0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000
	0000000000000000	0 0 0 00 00 00 0	0 0 0 0 0 0 00 00 0	0000000000000
<u> </u>	0000000000000000	0 0 00 00 00 00 00 0	0 00 00 0 00 00 00 00 0	0 00 00 00 00 00
	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000000000	0 0 00 00 00 00 00
<u><u><u> </u></u></u>	0 00 00 00 00 00 00 0	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000000
	0 00 00 0 0 0 00 0	0 0 00 00 00 00 00 0	000000000000000000000000000000000000000	0000000
			000000	
· · · · · · · · · · · · · · · · · · ·	0 0 0 0 0 0 0	0 0 0 0 0 0 0	8000000	
888000000	6 00000000 000	00000000000	80000000	000000000000
888800000	80000000	000000000000000	0 0 0 0 0 0 0	0000000000000
8889999999	8008800	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
<u> </u>	8008800	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0 00 00 00 00 00 00 00
<u>~~~~~~~</u> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	80000800	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0 00 00 00 00 00 00
0 00000000	00000000	0 00 00 00 00 00 00 00	0 00 00 00 00 00 00 00 00 00 00 00 00 0	0 00 00 00 00 00 00
0 0 00 00 00 00 00 00	000000000000	000000000	000000000	0 00 00 00 00 00 00 00 00 00 00 00 00 0
0-0-0-0-0-0-0	000000	00000	00	0-0-0-0-0-0
0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0-0-0-0-0-0	000000000000000000000000000000000000000	0000000
0.0000000000000000000000000000000000000	00000000	0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	~~~~~~~~~~
000000000000000000000000000000000000000	00000000	00000000000000	0.00.00.00.00000000	0000000000
0 0 00 00 00 00 00 00 00 00 00 00 00 00	0 0 0 0 0 0 0 0 0	0000000000000	0 00 00 00 00 00 00 0	8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
0 0 00 00 00 00 00 00	000000000000000000000000000000000000000	00000000000000	0 00 00 00 00 00 00 0	000000
00000000	000000000000000000000000000000000000000	000000000000000		000000
000000000	000000000000000000000000000000000000000	00000000000000	0 0 0 0 0 0 0 0 0	000000
800088	000000000000000000000000000000000000000	0000000000000000	0 0 0 0 0 0 0 0 0 0	000000
				0-
***	600 <u>000</u> 00	2800000	8000000	0 <u>08800</u>
	0.000000000000	0000000	2000082	0008800
	000000000000000000000000000000000000000	0000000000	20000000	0000000
	000000000000000000000000000000000000000	0 0000 0 00000	00000000	0000000
	00000000000	0 00000 0 00000	0 0 0 00 00 00 00 00 00	0000000
	00000000	0 00 00 00 00 00 00	0 0 0 00 00 00 00 00 00 00 00 00 00 00	0000000
	00880088	00000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 00 00 00 00 00
	00880080	80080000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000000000000
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		0000	

ALS The Spectrum of Crystallinity

- Poor crystals
 - Diffract kinematically(Bragg), but diffraction limited due to poor long range order.
 - Can show powder Laue rings/spot smearing due to mosiaicity becoming microcrystallinity
 - Can also display non-Bragg scatter due to TDS

Office of Science

$\begin{array}{ll} \text{ALS} & \text{Scattering Efficiency} \\ \text{Intensity of Diffraction} \approx \lambda^3 = \frac{LI_{incident} \langle |F_{hkl}^2| \rangle V_{crystal}}{V_{cell}^2} \end{array}$

- where:-
- F = number of electrons per atom
- V_{crystal} = volume of the crystal
- V_{cell} = volume of the unit cell

M.M.Harding J. Synchrotron Radiation, 250-259 1996

ALS Intensity vs. Displacement

AS Higher Angle Reflections Affected by Larger ADPs

Wavelength

- The material and the wavelength need to be compatible
 - Short wavelengths better for heavy absorbers
 - Long wavelengths better for light atoms (weakly diffracting elements)
 - Be aware of absorption edges and potential fluorescence from sample

Bigger isn't always better

- Large crystals aren't guaranteed to diffract better
- Crystal should match beam size
 - But if there is a choice, smaller than the beam is usually better
- Rocking width can be worse with large crystals due to poor mosaicity

Structures from change:

IN SITU EXPERIMENTS

In-situ Crystallography

- The application of a stimuli to produce structural change
 - Temperature
 - Pressure
 - Gas or Vacuum
 - Light
 - Electric or Magnetic Fields

Desolvation

Three-Way Crystal-to-Crystal Reversible Transformation and Controlled Spin Switching by a Nonporous Molecular Material Sanchez Costa et al., *J. Am. Chem. Soc.*, **2014**, *136* (10), pp 3869–3874 DOI: 10.1021/ja411595y

Experimental Procedure

Procedure

- High quality ground state data collection
 - Irradiation (LEDs) LED ring
 - Metastable state data collection
 - Inspection of the density map
 - Temperature variation experiments

J. Appl. Cryst. 2010, 43, 337-340

Gas Cell

High Pressure with Diamond Anvil Cells

Advanced Light Source An Office of Science User Facility

ALS Diamond Anvil Cell (DAC)

Moggach, S. A. et al. J. Appl. Crystallogr. 2008, 41, 249-251.

A High Pressure Sample

Advanced Light Source An Office of Science User Facility

ALS The Zinc-Alkyl Gate (ZAG) Family

Figure 4. Comparison of ZAG-4 (left) and ZAG-6 (right) as viewed down their *c*-axes.

1037

dx.doi.org/10.1021/cr2002257 |Chem. Rev. 2012, 112, 1034-1054

Chem. Rev. 2012, 112, 1034–1054

ZAG-4, under pressure

Why Synchrotrons?

- In situ experiments usually produce the degredation of a crystal, and most are more successful with small crystals.
- Poorly diffracting crystals need as much intensity as they can take.
- In both cases, a synchrotron offers orders of magnitude more flux, which means a better chance of success.

AIS

ALS

The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231

COMPRES, the Consortium for Material Properties Research in Earth Sciences, is supported under NSF Cooperative Agreement EAR 11-57758.

