X-ray Photon Correlation Spectroscopy

Andrei Fluerasu, *fluerasu@bnl.gov* Physicist & Lead Beamline Scientist, Coherent Hard X-ray Scattering NSLS-II, Brookhaven National Laboratory National School on Neutron and X-ray Scattering, Aug. 2017

<u>Outline</u>

Introduction

- Why (oportunities for mesoscale science) and How (cohernece and speckles)
- Speckle fluctuations, dynamics
- Speckle Statistics

• X-ray Photon Correlation Spectroscopy (XPCS)

- Time autocorreltion functions, equilibrium dynamics
- Signal-to-Noise
- Two-time correlation functions, non-equilibrium dynamics
- Higher order correlation functions, dynamical heterogeneities
- X-ray Speckle Visibility Spectroscopy
- A mini user guide to XPCS

• XPCS examples

- Dynamics of concentrated hard-sphere suspensions. Is there a colloidal glass transition?
- "Anomalous" relaxations in "jammed" systems
- Conclusions

The Next "Big Thing"

• Opportunities for "Mesoscale Science" DOE BESAC report Sept 2012 http://www.meso2012.com

National Synchrotron TIONAL LABORATORY | Light Source ||

"More is Different"

P.W. Anderson, *Science* **177**, 393 (1972)

- Most *macroscopic properties* of *complex disordered materials emerge* at the *mesoscale* (nm to µm):
 - Mesoscale structure: defects, grain size, macromolecule shape/size, entanglement length, ...

"More is Different"

P.W. Anderson, *Science* **177**, 393 (1972)

- Most macroscopic properties of complex disordered *materials emerge* at the *mesoscale* (nm to µm):
 - Mesoscale structure: defects, grain size, macromolecule shape/size, entanglement length, ...

But things are not static !

Mesoscale Dynamics •

> Z. Dogic (Brandeis Univ.) Dynamics of bundled active networks

National Synchrotron

TIONAL LABORATORY Light Source II

8

Sunset in Alaska

Images of a Stars in a Telescope

Stars (far away) = nearly coherent
 "point-like" sources + fluctuations

Speckles with (partially) coherent X-rays

Speckles from Cu₃Au

Cu₃Au

Recorded at X25, NSLS on Kodak film

M. Sutton, et al. Nature 352, 608 (1991)

Speckles with (partially) coherent X-rays

Speckles from colloidal suspensions

Measured at 34ID with a CCD detector

National Synchrotron

ATIONAL LABORATORY Light Source II

Speckle Fluctuations & Dynamics

• At high brightness light sources (APS, ESRF, Petra-III, NSLS-II ...) it is possible to measure dynamics by recording "speckle movies"

National Synchrotron

Light Source II

Mini-introduction to coherence

- Coherence = ability to create interference fringes w. good contrast
 - i.e. exists whithin a region where the phase difference between any pair of points is well defined and constant in time
 - Transverse coherence: $\Delta \Phi(P3:P4)$
 - Longitudinal(temporal) coherence: $\Delta \Phi(P1:P2)$

Malcolm Howells, Lecture Notes, ESRF 2007

L. Wiegart, CHX, NSLS-II

Transverse coherence

- Ideal *coherent* (Gaussian) source:
 - a source cannot be arbirarily small and arbitrarily well collimated at the same time (diffraction limit)

$$\sigma \cdot \sigma' \simeq \frac{\lambda}{4 \pi}$$

National Synchrotron

ONAL LABORATORY Light Source II

 A transverse coherence length (@ distance L from the source) can then be defined as:

$$l_{h,v} = \frac{\lambda L}{4 \pi \sigma_{h,v}}$$

Transverse coherence

- Real Source:
 - The degree of coherence is determined by the phase space volume σσ'; "Heisenberg's inequality":

$$\sigma \cdot \sigma' \geq \frac{\lambda}{4\pi}$$

- "Liouville's theorem": the phase space is conserved by propagation, (ideal) crystal optics, (ideal) focusing, etc.
- To obtain a more coherent beam (at the expense of flux!), the phase space can be limited/reduced by collimation (a set of slits)

National Synchrotron

LABORATORY Light Source II

Coherence of (NSLS-II) Sychrotron Sources

- Real Source:
 - Number of coherent modes:

$$\sigma \cdot \sigma' = N \frac{\lambda}{4\pi}, N \ge 1$$

- E.g. IVU20 undulator source at CHX, NSLS-II

E (keV)	6	8	10	12	16
σ _h (μm)	34.3	34.2	34.1	34.2	34.2
$\sigma_{h}^{'}$ (µrad)	18.3	18.3	18.0	18.2	18.2
σ _v (μm)	8.8	8.0	7.5	7.6	7.4
$\sigma_{h}^{'}$ (µrad)	8.5	8.2	7.7	8.1	8.0
M _h	38.2	50.7	62.2	75.7	94.6
$\mathbf{M}_{\mathbf{v}}$	4.5	5.3	5.8	7.5	9.0

National Synchrotron

NATIONAL LABORATORY Light Source II

Longitudinal coherence

• Longitudinal (temporal) coherence:

$$\frac{\delta \lambda}{\lambda} \approx \frac{1}{N}$$
, $l_l = \lambda N$

- Experimental requirement: max optical path diff. < *l*₁
- In a transmission geometry
 - Sample thinckness *h*, beam size *d*

 $h\sin^2(2\theta) + d\sin(\theta) \leq l_1$

d 'sample' 2θ h

A. Madsen, A. Fluerasu, B. Ruta, Structural Dynamics of Materials probed by X-ray Photon Correlation Spectroscopy, Springer, 2014

National Synchrotron

Light Source II

NATIONAL LABORATORY

Correlation Functions

- Coherence \rightarrow measures dynamics $\langle I(q,t)I(q,t+\delta t)\rangle = \langle I(q)\rangle^2 + \beta(q)(...)|S(q,t)|^2$
- Intensity autocorrelation function, dynamic structure factor & Siegert relationship:

$$g^{(2)}(q,t) = \frac{\langle I(q,t) I(q,t+\delta t) \rangle}{\langle I(q) \rangle^2} = 1 + \beta(q) \left| \frac{S(q,t)}{S(q,0)} \right|^2$$

Intermediate Scattering Function

cience

$$g^{(1)}(q,t) = \left| \frac{S(q,t)}{S(q,0)} \right| \propto \iint \rho_n(q) \rho_m(q) \exp(iq[r_n(0) - r_m(t)])$$

Correlation Functions

• Signal-to-noise (of $g^{(2)}$) – it's complicated!!

 $R_{sn} = K(T\tau \Omega_x \Omega_z)^{1/2} \Sigma W \exp(-W\Lambda) \tilde{B}(\Delta E/E) r_{snx} r_{snz}$

- K = detector efficiency
- T = total experiment duration
- τ = accumulation time
- Ω = angle subtended by Q of interest
- Σ = scattering cross section per unit volume
- W = sample thickness
- Λ = 1/attenuation length
- B = source brilliance
- $\Delta E/E$ = normalized energy spread
- r = factor depending on source size, pixel size, and slit size

Lumma *et al. Rev. Sci. Instrum.* 71, 3274 (2000) Jackeman *et al.* J. Phys. A, 5, 517 (1971)

- SNR ~ $B\tau^{1/2}...$
- Need an area det
- ~small pixels
- fast frame rates

Eiger 1M detector (Dectris)

NAL LABORATORY Light Source II

Dynamics of Materials (soft- and bio-):

time and length scales

time [s]

TIONAL LABORATORY Light Source II

Dynamics of Materials (soft- and bio-):

time and length scales

IONAL LABORATORY Light Source II

X-ray Speckles (Static!)

Correlation functions $g^{(2)}(q,\tau)$ measured from a CoralPor® static sample show excellent instrument stability.

www.schott.com

250mA top-off, 1.5×10^{11} ph/s in $10 \times 10 \text{ um}^2$; total dose = 101 seconds of "full flux" Note: decay at ~ 5×10^3 seconds due to 'beam damage'

- Speckle statistics is described by the negative binomial distribution with

 - *M*=*M*(*q*,*T*): # of coherent modes *K*=*K*(*q*,*T*): avg # of counts at a given q/ring
- Normalized variance becomes:

$$var_{K}(q,T) = \frac{1}{M(q,T)} + \frac{1}{K(q,T)}$$

Large K(q,T)

Mandel, L. (1958). Proc. Phys. Soc. 72, 1037. Mandel, L. (1959). Proc. Phys. Soc. 74, 233. Goodman, J. W. (2007). Speckle Phenomena in Optics: Theory and Applications. Englewood: Roberts and Company.

DEPARTMENT OF Office of ENERGY Science

Speckles & Speckle Visibility Spectroscopy

- Speckle statistics is described by the negative binomial distribution with
 - M=M(q,T): # of coherent modes
 - K = K(q,T): avg # of counts at a given q/ring

$$P(K) = \frac{\Gamma(K+M)}{\Gamma(K+1)\Gamma(M)} \left(\frac{M}{\langle K \rangle + M}\right)^M \left(\frac{\langle K \rangle}{M+\langle K \rangle}\right)^K$$

Office of

Science

Figure 2

Photon count statistics analysis performed over an ensemble of pixels marked in the circular region in Fig. 1(*a*) for four integration times. Markers represent the photon count probability density P(K) from the experiments, and solid lines are the fitting curves using the negativebinomial distribution function [equation (11)], dashed lines are the fitting curves using the gamma distribution function [equation (5)] and dotted lines are the fits using equation (11) with M as the only fitting parameter, while $\langle K \rangle$ is calculated from the measured photon counts. The results are plotted as a function of reduced count $K/\langle K \rangle$, so that P(K) values with different integration times can be stacked in the same figure.

Luxi Li et al. J. Synch. Rad. 2014

Speckles from single shot LCLS pulses

S. O. Hruszkewycz et al., PRL109, 185502 (2012)

National Synchrotron

Light Source II

BROOKHAVEN

NATIONAL LABORATORY

X-ray Speckles come to life

• Molecular motion in protein microcrystals coupled over large scales generate diffuse scattering around the main Bragg peaks.

L. Li et al., unpublished

- Colloids are ubiquitous:
 - Particles (1-1000 nm) of dispersed phase in dispersion medium

National Synchrotron

ONAL LABORATORY Light Source II

- Phase behavior; The "magic" of self-assembly ...
 - Opals are dried "polycrystalline" colloids" patchy colloids" can be elementary blocks for programmable self-assembly of "colloidal materials"
 (O. Gang. BNL & Columbia)

(O. Gang, BNL & Columbia)

Colloids: simple diffusive dynamics

Intermediate Scattering Function

$$g^{(1)}(q,t) \propto \sum_{i=1}^{N} \sum_{i=1}^{N} \exp(iq[r_i(0)-r_j(t)])$$

• Mean square displacement

$$\langle [r_i(0) - r_j(t)]^2 \rangle = 6 D_0 t \qquad D_0 = \frac{\kappa_B I}{6\pi \eta a}$$

Intermediate Scattering Function

$$g^{(1)}(q,t) = \exp(-D_0 q^2 t)$$

1.

k_i

k,

35

2θ

$$q = \frac{4\pi}{\lambda} \sin\left(\frac{2\theta}{2}\right)$$

 Measures time scale associated with
 displacement of colloids

- i.e. measures dynamic structure factor *S*(*q*,*t*)
- By averaging over ~10¹¹ particles

• For different *q* values

National Synchrotron

Light Source II

• Width function analysis $w(q,t) = -\log[g^{(1)}(q,t)/q^2] \propto Dt \propto \langle r^2(t) \rangle$

National Synchrotron

Light Source II

Two-time analysis

Non-equibrium dynamics in colloidal depletion gels (colloid/polymer mixtures):

Two-time correlation functions: $C(Q, t_1, t_1) = \frac{\langle I(Q, t_1)I(Q, t_2) \rangle_{pix}}{\langle I(Q, t_1) \rangle_{pix} \langle I(Q, t_2) \rangle_{pix}}$

average time ("age"):

$$t_a = \frac{t_1 + t_2}{2}$$

time difference: $t = \delta t = |t_1 - t_2|$

* M.Sutton et al., Optics Express 11, 2268 (2003).

AF et al., Phys. Rev. E, 76, 010401(R) (2007)

17:33:42

Two-time analysis

Two-time correlation functions: $C(Q, t_1, t_1) = \frac{\langle I(Q, t_1)I(Q, t_2) \rangle_{pix}}{\langle I(Q, t_1) \rangle_{pix} \langle I(Q, t_2) \rangle_{pix}}$

Two-time analysis

Two-time analysis: $g_2(Q, t_a, t) = \beta exp(-(\Gamma t)^{\gamma}) + g_{\infty}$

4th order correlations: dynamical heterogeneities

- Orsi et al. dynamics in langmuir monolayer of nanoparticles using Grazing Incidence (GI)-XPCS
- Heterogeneities (correlations of correlations)

$$g^{(4)}(t,\widetilde{\tau}) = \langle C(t_1,t_1+\widetilde{\tau})C(t_1+t,t_1+t+\widetilde{\tau})\rangle_{t_1}$$

= $\langle I(t_1)I(t_1+\widetilde{\tau})I(t_1+t)I(t_1+t+\widetilde{\tau})\rangle_{t_1}$

A. Duri *et al.*, *Phys. Rev. E* 72, 051401 (2005)
D. Orsi *et al.*, *Phys. Rev. Lett.* 108, 105701 (2012)

DEPARTMENT OF

ENERGY

Office of

Science

A "User Guide" to XPCS

Shi(Q, (1111)

100

200

• CHX optimized for Coherent X-ray Diffraction - *XPCS*, (GI-)SAXS/WAXS, CDI

Unprecedented q-range available in-situ from Angstroms to Microns

Source: IVU 20 (low β) - highest brightness E=6–15 keV

DETECTORS

1. Diagnostics_

 Fluorescent Screens; Pin diodes, Monitor counter; beam imaging; BPM

2. EIGER (Dectris)

best in class area detectors **3kHz** (up to **15 kHz**), **75 µm pixels**

- Eiger 1M for c WAXS
- Eiger 4M for c S AXS

Science

3. Point Detectors (FMB Oxford)

- Scintillator detector systems;
- Avalanche Photodiode (APD)

Beamline Optics: optimized for high stability & wavefront preservation

- **COHERENT FLUX:** $\approx 10^{11} \text{ ph/sec } (\Delta \lambda / \lambda = 10^{-4})$ $\approx 10^{12} \text{ ph/sec } (\Delta \lambda / \lambda = 10^{-3})$
 - BEAM SIZE : ≈10 μm (SAXS) ≈ 1 μm (WAXS)

National Synchrotron

Light Source II

Example Scattering Geometries

Science

NATIONAL LABORATORY Light Source II

A "Mini User Guide" to XPCS

Questions:

- How much does the sample scatter?
 - we need ~ 10^{-N} ph/correlation time/speckle(pixel) g⁽²⁾
 - We need ~1/ph/correlation time/speckle(pixel) $C(t_1, t_2)$
- What time scales are we expecting?
- What is the radiation limit? Is the sample homogeneous? i.e can we build an ensemble by averaging information recorded from different locations?

National Synchrotron

NATIONAL LABORATORY Light Source II

A "Mini User Guide" to XPCS: Data Analysis

CHX Data Analysis Solutions: https://github.com/NSLS-II-CHX

XPCS experiments on the dynamics of silica colloids (R=250 nm) suspended in a polymer solution of polypropyleneglycol (PPG) in water.

- (a) A single speckle pattern recorded in 2 ms from the colloidal suspension.
- (b) Intermediate scattering function (dynamic structure factor)

S. K. Abeykoon *et al.*, 2016 New York Scientific Data Summit (NYSDS), New York, NY, 2016, pp. 1-10.doi:10.1109/NYSDS.2016.7747815

<u>A more detailed science example:</u> high density hard-sphere (colloidal) suspensions

Hard-sphere colloids:

- Spherical PolyMethylMethacylate (PMMA) particles coated with 12 hydroxystearicacid in cis-decalin (A. Schofield, Edinburgh)
- Entropic forces between polymer coating layers → infinite "hardsphere-like" repulsions

National Synchrotron

IONAL LABORATORY Light Source II

The phase behavior depends on the *particle volume fraction* Φ

Dynamics in high density hard-sphere suspensions

P. Kwasniewski, PhD Thesis 2012

Short-time diffusion D_s ($t < \tau_s$) Motion of particles inside of "cages" created by other particles Slowed down (compared to D₀) by *hydrodynamic interactions*

D. Orsi, AF et al. Phys. Rev. E 2012

Long-time diffusion D_L ($t > \tau_L$)

Structural rearangements i.e. "Rearrangements of cages" Slowed down (compared to D_s) by

direct interactions

P. Kwasniewski, AF, A. Madsen, Soft Matter, 2014, 10, 8698-8704

The Colloidal Glass Transition

What happens here?

BROOKHAVEN NATIONAL LABORATORY Light Source II

National Synchrotron

Supercooled Liquids vs. Hard-Sphere Colloids

• In addition to being interesting/useful in their own right, colloids are an excellent model system for supercooled liquids and molecular glassformers

Denenedetti, Stillinger, Nature 2001

D. Orsi, AF et al. *Phys. Rev. E* 2012 P. Kwasniewski, AF, A. Madsen, *Soft Matter* 2014 $\eta/\eta_0 \rightarrow D_0/D_L$ (Segre *et al.*, *Phys. Rev. Lett* 2001)

National Synchrotron

NATIONAL LABORATORY Light Source II

Structural Relaxations near the Hard-Sphere Glass Transition

National Synchrotron

NATIONAL LABORATORY Light Source II

BIERERGY Office of Science

Light Source II

Structural Relaxations near the Hard-Sphere Glass Transition

MCT:

- relaxations follow an unexpected functional (VFT) form suggesting a kinetic arrest near the "random close packing concentration Φ_{RCP}~0.67 (~10% polydispersity)
- Suggests connection with Jamming

P. Kwasniewski, AF, A. Madsen, *Soft Matter*, 2014, 10, 8698-8704 See also; Brambilla, Cipelletti *et al.*, *Phys. Rev. Lett.* 104, 169602 (2010)

Anomalous Dynamics near the Hard-Sphere Glass Transition

- Near the colloidal Glass Transition the dynamics becomes anomalous
 - Compressed exponential relaxations
 - Hyperdiffusive dynamics: $\langle r^2(t) \rangle \rangle$ "faster than" $\sim t$

• Is this behavior a signature of *jamming*? Universal non-diffusive slow dynamics in aging soft matter L.Cipelletti *et al.*, *Faraday Discuss.*, 2003, **123**, 237

Jamming?

- Is this behavior a "universal" ?
- Common behavior in seemingly different systems: hyperdiffusive & faster-than-exponential relaxations associated with Jamming

L.Cipelletti *et al.*, *Faraday Discuss.*, 2003, **123**, 237

• Jamming – heterogeneities & response to flow/shear

A. Liu *et al*. Nature 1998

NATIONAL LABORATORY Light Source II

National Synchrotron

Anomalous Dynamics near the Hard-Sphere Glass Transition

- Polymer-based sponge phases P. Falus et al. Phys. Rev. Lett 2006
- Aging Clay (Laponite) Gels B. Bandyopadhyay et al., Phys. Rev. Lett. 2004; R. Angelini et al., Soft Matter 2013
- Antiferromagnetic domain fluctuations (Cr) O. Shpyrko et al., Nature 2007
- Aging Ferrofluids A. Robert et al. Europhys. Lett. 2007
- Aging colloidal gels ("transient gels") A. Fluerasu et al., Phys. Rev. E 2007
- Cross-linked Polymer Gels

R. Hernandez et al., J. Chem Phys 2014 O. Czakkel, Europhys. Lett. 2011, K. Laszlo et al., Soft Matter 2010

 Atomic-scale dynamics & aging in metallic glasses B. Rutta et al, Phys. Rev. Lett. 2012

ENERGY Science

Office of

Dynamical Heterogeneities

 $\Phi \sim 0.57$

 $\Phi \sim 0.61$

U.S. DEPARTMENT OF Office of Science

BROOKHAVEN NATIONAL LABORATORY Light Source II

National Synchrotron

Colloidal Glasses: Conclusions

- Low-Φ: Dynamics of colloids well explained by existing many-body (a) theories (MCT)
- Φ ≥ 0.57-0.59 Stress in the network and stress-induced (nonthermal) fluctuations become dominant and hinder the expected glass transition
- Non-equilibrium, complex dynamics determined by "rough" energy landscape (heterogeneities) *Hyperdiffusive relaxations* → *jamming* (common also in other systems)
- Response to perturbations?
 - \rightarrow flow, shear

Acknowledgements

- *Colloids Pawel Kwasniewski* (ESRF), *Davide Orsi* (U. Parma) A. Madsen (XFEL)
- Proteins Luxi Li, V. Stojanoff, L. Wiegart (BNL), S. Mochrie (Yale)
- *CHX* Lutz Wiegart, Yugang Zhang,M. Carlucci-Dayton, S. Antonelli, R. Greene,D. Chabot, W. Lewis,
- **Beamlines** ID 10 ESRF Y. Chushkin, 34-ID APS R. Harder 8-ID APS - A. Sandy, S. Narayanan
- *NSLS-II* Ron Pindack, Qun Shen, P. Zschack, J. Hill, A. Broadbent O. Chubar, K. Evans-Lutterodt, P. Siddons ...
- **Funding** NSLS-II project: DOE# E-AC02-98CH10886 BNL SC0012704 BNL LDRD 11-025

