Accelerator Physics – Progress and Challenges

J. Galambos SNS AAC Meeting Jan. 22-24, 2008

On behalf of the AP Team

Accelerator Physics Group Activities

- Reduce Beam Loss
- Perform beam studies
 - Same team that commissioned the machine
 - Devise measurements to understand and correct causes of beam loss
- Request new modified beamline equipment
- Develop and maintain the high level software
- Perform simulations and beam modeling
 - ORBIT code for Ring
 - Parmila, IMPACT models for linac
- Keep an eye on the future
 - high intensity effects
 - laser stripping

SNS Time Structure Nomenclature

Accelerator Physics Beam Study Rhythm

Run Schedule for FY 2008

extended outage Yellow =

Green = neutron

Layout of Linac RF with Warm and SCL Modules

One correct amplitude and phase setting

for the Department of Energy

Normal Conducting LINAC Tuneup Procedures

- Warm Linac RF Amplitude and phase setpoints determined with a phase scan method
 - Accurate to ~ 1%, 2 degrees
- Use design quadrupole strengths and RF settings
- First machine to routinely use this method

SCL Cavity Tuneup

- Use highest available SCL gradients far from design
- Set the SCL cavity phases using phase scan technique
- Scale design quadrupoles with beam energy

SCL Cavity Amplitudes

- Strategy is to run cavities at their maximum safe amplitude limit (S. Kim's talk)
- Need to be *flexible* SRF capabilities change, not near the design
- Linac output energy is a moving target

SCL Setup Times are Decreasing

- The procedures used to setup the superconducting linac have matured, and the setup time is now minimal
- Still exists a need for fast recovery from changes in the SCL setup

SCL Cavity Fault Recovery Scheme

- 1 GeV is not ultra-relativistic change in upstream cavity has a large imapct on downstream cavity phase settings
- Use a model to predict change in measured downstream arrival times from a change in an upstream cavity
- In April 2007 the SCL was lowered from 4.2K to 2 K to facilitate 30 Hz operation, 20 cavity amplitudes changed
- The fault recovery scheme restored beam to the previous loss state

Linac RMS Beam Size (Nov. 2007)

Lines are model predictions with design Twiss parameters, and dots are wire profile measurements

Warm linac beam size is in good agreement with design values

Linac Beam Profiles

87.66

- Profiles at the start of the HEBT 12/10/2007
- Beam profiles are close to Gaussian at the end of the linac than previously observed
 - Ignore startup portion of the beam
 - Quadrupole settings are closer to design values
 - Source dependent

Linac concern: Chopper Quality (*S. Aleksandrov's Talk*)

- The chopper system provides clean gaps between mini-pulses to provide a gap to fire the extraction kicker in the Ring
- It is a 2 stage system designed to clear the gap to 1 part in 10⁴
 - LEBT chopper at 65 keV
 - MEBT chopper at 2.5 MeV

- The MEBT chopper has never been used during neutron production
- Sometimes have leading/trailing satellites
- Protection measures introduced in the LEBT system have slowed the rise / fall times
- Improperly centered beam through the LEBT can cause mini-pulse to mini-pulse position jitter effectively increasing the beam size.

Beam Loss / Residual Activation

- SNS is designed to be a hand's on maintainable accelerator
- 100 mRem/hr at 1 foot is considered the limit for relatively easy hands on maintenance
 - Corresponds to ~ 1 W/m beam loss
- BLMs give a measure of beam loss
 - (~ 400 BLMs throughout the machine)
- Residual activation measured after every production run
- Use the relationship between BLM readings/ measured activation to predict activation during production setups and prioritize areas for beam study

CCL Residual Activation

1/7/2008 Measurements

- Hot spots:10-30 mRem/hr
- Scaled to 1.4MW: 90-250 mRem/hr
- Context: similar residual activation as Dec. 2006 at ~ 30 kW
 - Better trajectory control (S. Aleksandrov's talk)
 - Additional BLMs
- Keys to further improvement:
 - Longitudinal RF setup refinement
 - Transverse matching
 - MEBT chopping

SCL Residual Activation Status

Scaled to 1.4 MW: 90-250 mRem/hr

SCL Beam Loss / Mitigation Efforts

HEBT Transport Line

- Not much beam loss / activation
- Upstream transverse + momentum collimation has been tested but is not used
 - Causes more beam loss in the arc than halo reduction benefit

Off Energy Beam

<0.1

QV 10

18 Managed by UT-Battelle for the Department of Energy

0.1

69

<0.1

SCRAPER

3.0 1.5

<0.1

SCRAPER

0.3

<2.0

QV 11

Ring Setup Recovery / Repeatability is Good

anap is save : ices	mestore selected		r rates	0.090	-													
Select Systems:		HEBT ICS		10m	p 1	Dmp LE	LEBT	MERT	REQ RTET		Ring	SCL	SEC					
CCL	-	Open				Comme			1	CCL		CF	0		m.		EDmp	
		Type			letpoir	nt marrie	turned a	SP.Save Vi	1 2	Nve Val		Fradbad	k Name	1	R8-Save	Val	RB byg Va	
on				MEBT .!	Hag PS	5.DCV1	4:1,5et 5	62253	5.62	2253	MEET	Mag PS	DCV14	13	5.60431		0.17703	
EDmp				MEBT_	dag PS	5.QH01	0.0.3	4.24000	34.2	24000	1.5				100000			
HEET				MEBT,1	tag P	5,QH01	1.Se. 2	84 10100	283	27541	MEBT	Mag PS	QH01	l.	292.3911	1	1 83639	
ICS				MEBT_I	Aag:PS	5_QH03	B_B. 2	8.32660	28.3	32660	1000				1999 B. C.			
1Dmp	4			MEBT_I	tag Ps	5.QH03	1.1,5e 2	39 80036	240	\$2974	MEBT	,Mag PS	QH031	k.	241.0601	5	-2.73445	
LDmp	T			MEBT_1	tag:PS	5,QH05	410. 1	7.00900	17.0	00000	1.000					-		
Select Subsys:				MEBT J	rag PS	1.QH05	a10. 2	51 11232	251	10872	MEBIT	,Mag:PS	QH05a	101	257.0389	ù-	-0.79113	
PIM	116			MEBT .!	dag PS	5.QH07	a08 1	1.70000	11.7	70800								
Coll				MEBT_I	tag Pi	5_QH07	u08 1	72 58596	172	59206	MEBT	,Mag PS	QH074	1804	177.2227	4	-0.02132	
LODG C				MEBT_I	lag PS	5,QH12	B_B 2	9.02000	29.0	02000								
intras.				MEBT_I	tag PS	5.QH12	1,5e. 2	45 07044	245	45766	MEBT	_Mag.PS	.QH12	l.	247.9777	9	-0.05195	
0440				MEBT	lag PS	5,QH14	B.B. 1	0.44000	10.	44000								
RF.				MERT,	tag P	5,QH14	H1,56	7.07453	87.1	11597	MERT	,Mag PS	0414	1	89 885 45		0.12448	
Scrp				MEB7, M	lag:P3	5,QV02	8,83	7.85000	37.8	35000	1.000							
Src				MEBT_I	tag P	5.QV02	(Se.)	24 67771	128	50593	MEBT	Mag.PS	QV021		128 4884	3	0.09285	
Steel				MEBT, I	tag Pi	5.QV04	8,8. 1	7.69000	17.6	\$9000	0,000					$\geq n$		
TP				MEBT_1	tag.P	5,QV04	17,5e 1	47 76847	147	75349	MEET	Mag.PS	QV041		149 2693	6	0.23553	
Tim				MEBT,	lag P	5, QV 06	409:2	6.20000	26.2	20000	1000							
				MEBT_I	dag PS	5.QV06	409.3	90.18374	390	23122	MEET	Mag PS	.(W06a	1.80	399.4164	9	-2.39422	
				MEBT,	4ag P	5.QV11	8.8 1	6.63000	16.6	00068	12				14			
				MERT	tag:PS	5.QV11	1,50.1	18.99045	139	04691	MEBT	Mag PS	QV111		140.7528	0	0.05172	
				MEBT_	tag PS	5.QV11	8,8 2	6.10000	26.3	10000	1							
				MEBT_1	tag:PS	5, QV 13	1,50 2	19.72577	219	95735	MEBT	Mag 95	QV131		215.1538	6	-2 80007	
	8	۶									1							
				MEBT_1	LRF P	CM1 CH	Amp K	43000	0.00	0300	MEBT	LLRF FC	M1:cov	V.	1 90930		4.061E-3	
				MEBT,	UN II	CM L CH	Phas. 1	38.89260	138	89260	MEBT	LURF FC	M1:cav	Pna	138.8869	6	0.000E0	
				MEBT ,I	LRF FI	CM2 CH	LAmp C	35000	0.00	0300	MEBT	LLFF FC	M2:cav	V	156929	1,2	4.572E+3	
PV name filter				MEBT_I	LPJ F	CM3 (0)	Phas.	118.0088	0 -11	008800	MEBT	LURF FC	M2 cav	Pha	-117 686	80	0.00060	
				MEBT_I	LEF F	CM3:Ct	sAmp K	42000	10.00	DOE0	MEBT	LLRF FC	M3:cav	Ν	1.82122		\$-378E=3	
TOTAL CONCERNMENT				MEBT_I	LEFF	CM3 CI	Phili -	115.4010	2 -11	5,40100	MEBT	LURF FC	M3 rav	Phik	-115.394	85	0.00060	
SetSelections				MEB7 .I	LRF F	CM-4. Ct	tAmp (c	48500	0.00	0300	MEET	LLRF FC	M4:cav	٧	2.03303	24	5.556E=3	
Manager and		_		MEBT	LEFF FI	CM4 OI	Phas. 4	7 67520	47.8	57520	MEBT	U.R.F.F.C	M4 Cav	Pha	47.35414		0.000E0	
SHELLAR	10						M	arhine dat	. saver	1 31 2003	. 08. 1	6 33.33	00.0					

Magnet cycling

Save / Compare / Restore

- ~ 1 shift to recover a Ring / Transport line setup after an extended maintenance period
- Magnet cycling application for hysterisis effects
 - Determine which magnets require cycling and the minimal cycling periods
- Sophisticated save/compare/restore application

Ring Injection Area (M. Plum's talk)

- "As delivered" Ring could not transport beam to the injection dump and circulate beam in the Ring (*M. Plum's talk*)
 - Inconsistency in chicane values for Ring and dumpline designs
 - Did not fully appreciate the influence of 3-D magnetic effects
- Remedial actions
 - Moved chicane
 - Use oversize injection foil (reduce fractional beam to the Injection dump)
 - Added additional diagnostics and magnet to the dumpline to understand waste beam transport
 - Further upgrades are planned

Injection Dump-line Beam Loss

- Future upgrades:
 - New, larger aperture septum to be installed in Feb. 08 outage
 - Additional quadrupole in the injection line

Ring Extraction / Collimation beam loss

- Extraction area is sensitive to beam in gap
- Collimation works close to expectations (J. Holmes talk)
 - Presently we are using short pulse beams (small beam size) and to not employ collimation

Ring RF

Bunch Shape at Extraction

- Use 2 fundamental cavities, 1 2nd harmonic cavity
 - Purpose of the dual harmonic is to reduce the bunch factor to minimize space charge
 - 2nd harmonic useful for gap cleaning
 - Can further clean the gap with RF manipulations, but time scale is long (100's of turns) – injection losses increase.

Ring Beam Loss Progress

- In general we are making progress
- Ring injection is the toughest area in the accelerator
- Most of the Ring is loss free

Ring Injection Straight Prediction – *Residual activation from foil scattering*

- 5000 hrs operation @ 1.4 MW, 3 hrs after shutdown
- > 1000 mRem/hr downstream from the foil – we are on track
 - Keys to improvement is reducing foil traversals with:
 - better injection painting
 - Reduced linac beam tails
 - Smaller / thinner foil

Beam Size Control On Target

- Use wire profiles and harp to predict the beam size and beam density on the Target (*T. McManamy's talk*)
- Difficulties understanding transport in the RTBT (M. Plum's talk)
 - Swapped plane in harp, coupled H/V beam in the RTBT
- Reluctance to vary RTBT quads from values used with view-screen during commissioning
- With the power density on Target at the upper limit
 - Painting a larger beam in the Ring is the only option, but this causes excessive beam loss at the end of the RTBT

RTBT Radiation

- Hot spot from extraction loss reduced with improved chopping
- End of RTBT losses reduced with updated lattice to keep the beam small there.

Equipment Requirements for 1.4 MW Capability

- Ion source current, pulse length and repetition rate requirements to meet the power ramp-up
 - These requirements assume a 1 GeV beam
- Presently at 60 Hz we are limited to:
 - ~ 850 MeV beam energy
 - ~ 880 μ s flattop pulse length
 - ~ 30 mA current at ~700 μ s

Equipment Concerns for Power Ramp Up

- Ion source needs to provide 38mA at 1 mS/60 Hz.
 - M Stockli's talk
- SCL needs to provide ~20% more accelerating gradient with an additional installed cryomodule + enhanced high beta cavity gradients through cavity reworking and surface processing.
 - S. Kim's + J. Mammosser's talks
- Starting the SCL RF fill during the HVCM ramp-up will provide ~ 70 μS longer flattop .
 - S. Kim's talk
- Increase the (medium β / high β) HVCM operating voltages from the present (69/71) kV settings to 73/75 kV to provide an additional 50 μ s flattop capability, support the increased cavity gradients, and support beam loading associated with 38 mA.
 - D. Anderson's and T. Hardek's talks

AP Concerns

- Linac
 - Quality of beam chopping (A. Aleksandrov's talk)
 - Understanding and controlling the source of beam loss in the SCL (A. Aleksandrov's talk)
 - Controlling the transverse beam size and halo delivered to the foil
- Ring
 - Injection area
 - Clean transport of waste beams to the Injection Dump (*M. Plum's talk*)
 - Good understanding and control of the beam distribution delivered to the Target (*M. Plum's talk*)
 - Foil scattering losses
 - Foil survivability (*M. Plum's talk*)
 - High intensity effects (V. Danilov's talk)

Summary

- We have increased beam powers from a few kW to > 200 kW.
 - Large reductions in normalized beam loss through the ramp-up
- Have been equipment issues, but none are show-stoppers.
- Now we are dealing with low loss fractions, and are continuing to develop strategies to understand them and further reduce them.

