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oal of factory e+e- collider
achine L 3E33
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oncerns

igh Beam Loading

pedance of cavity
ndamental, detuning - low-
ode coupled bunch
stabilities

eliability -extensive R&D effort in Vacuum, Feedback and RF systems

bility Concerns - operation well beyond stability thresholds in three plan

OM Impedances of cavities - HOM driven coupled-bunch instabilities

OM Dampers - Still the need for coupled-bunch fast feedback (238 MHz
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PEP-II low-level RF feedback loops: To

er loops - standard tuning for minimum reflected power

tron operating point support

ipple loop adjusts a complex modulator to maintain constant
in and phase shift through the klystron/modulator system.

lystron saturation loops maintain constant saturation headroom

ct feedback loop (analog)

auses the station to follow the RF reference adding regulation of
e cavity voltage

xtends the beam-loading Robinson stability limit

owers the effective fundamental impedance seen by the beam

b filter (digital)

dds narrow gain peaks at synchrotron sidebands to further reduce the res

 feedback loop (digital)

emoves revolution harmonics from the feedback error signal to avoid sat
p synchronous phase transients

gitudinal feedback uses RF as low-frequency “woofer” kicker

RF
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PEP-II RF Station, LLRF

 Station

2 MW 476 MHz Klystron

XI-based LLRF electronics

or 4 RF cavities, with HOM loads

V power supply, Interlocks, etc.
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How was necessary LLRF performance es

F -Origin and design/modelling F. Pedersen

inear frequency domain models

oncerns about non-linear klystron, impact on impedance control

F station model, beam model - time domain simulation

tuart Craig (Chalk River), Rich Tighe (SLAC)

acro-bunch structure, low-mode dynamics with Non-Linear Klystron

o criteria for stability, robustness beyond trajectories in ms time window

gn proceeded based on initial simulations. Little criteria for Noise, Dyn
atches, other technical imperfections

otype LLRF evaluated using PEP-I Klystron
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LFB Design
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HER and LER Systems at PEP-II
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w was necessary LFB performance estimated?

e-domain Simulation (tracking, cavity HOM estimates, with downsample

 tests - 1 bunch (SPEAR), ALS 4 processor “Quick Prototype”

lution of front end modelled and lab-tested

uired kicker power - estimated from injection error

amics estimates- no estimation beyond simulation. Filter completely pro

sholds- based on cavity HOM measurements/estimates

-LLRF Simulations predict stable Low-mode behavior - LER issue at u

rance policy - design in a low-mode “Woofer” channel

57.2400 ns 62.2400
4-91
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Features Anticipated and Implemente

rammable 80 processor DSP reconfigurable array

MS/sec. A/D, D/A, Downsampler - table driven 2 ns bucket spacing

-damp dynamics measurements (via dual-port memory, codes)

itoring functions (Signal MUX, RMS detectors front and back-end)

fer output

F

ware controlled broadband (direct - analog) and comb (IIR digital) loops

ware based low frequency digital regulators via EPICS

t-in network analyzer (via time domain excitation, response functions)

t files

fer input

days of NIM Modules with Pots - are over. Software intensive systems, w
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Commissioning Experience LLRF

es with configurations of direct and comb loops -stations oscillating
al configuration method - network analyzer no beam, gain/phase margins
bilities (Station and/or Beam) at current

rious signals in RF output, klystron oscillations
ual tweaking of the direct and comb loops
-off of station stability vs. beam stability
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Commissioning Experience LFB

- extensive experience with the “quick
otype” made commissioning fast

loped control filters, timing/
hronization methods

t turn VXI systems to ALS (1994) -
ess at full 300 mA design current

-II (1998)

ration on RF power supply noise (very
rent from ALS)

Thresholds - consistent with cavity
 measurements

sholds - low modes 300 mA

ational issues -
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Major Developments/upgrades - LLR

el based configuration - reconfigure loops at current. (Dynamics changes

t file methodology, weekly reports and analysis- understand origins of op

 Group delay Woofer - necessary above 1500 mA (HER), 2A (LER). Ra

tron linearizer, improved Driver Amplifier- addresses limits of impedanc
ion, more optimal station configurations

nsive re-investment in LLRF-Beam simulation models, verification
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Major Developments/upgrades - LFB

e commissioning - little hardware
ges. Power amplifier issues - start 6
, now 8 (plus spare) 500W.

ability problems DC supplies

rational issue (compared to ALS)-
ng of back-end, tracking synchronous
e changes. 9 (or 4) RF stations

t-end Issues

very difficult, 1.5 ns time structure.
rs of +/- 100 ps not significant. DC
ion of synchronous phase tracked by
frequency phase servo with 30 degree
F) range.

-end issues

er drive waveform is in the 1 - 1.5 GHz band. For optimum gain, timing
00 ps level. Example - 1125 MHz kickers, errors of +/- 1/8 of the drive per
rop the kicker gain by 3 dB. Errors of 1/4 the drive period (+/- 222 ps) d

uires care in setting up, and care to preserve in operation.
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LFB Flexibility -Quadrupole instability con

NE e+/e-collider at LNF

 increased operating currents

quadrupole mode longitudinal
instabilities have appeared (the
installed system suppresses the
dipole modes).

mplemented a novel quadrupole
rol filter

 software programmability of
the DSP farm

two parallel control paths for
dipole and quadrupole modes.

quadrupole control has been
successful, allowing a 20%
increase in luminosity.

added passive harmonic cavities (to address Tousheck-limited lifetime
t tune change with current. Stability required a novel negative group dela

0 20 40 60

−40

−20

0

20

40

Frequency (kHz

G
ai

n 
(d

B
)

0 20 40 60
−200

−100

0

100

200

Frequency (kHz

P
ha

se
 (

de
g)



orkshop  October 2007

LFB
kick

•  k

• C

RF -

oper

• In
st

• In

Imp

com

R&D
push

How
LLRF W

What wasn’t foreseen

- thermal problems with beam induced power in
ers

W power levels -SC/DIN/EIA connectors?

able fires (several systems)

ational task - management of so many stations

dividual station dynamics- unique station to
ation

dividually configured stations

act of non-linear Klystron/Preamp

plexity of fault file analysis

project - continual changes and performance
 in the machine

 is this consistent with the operating machine?
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Year  LER        L
1998 A     1.2E33
Run       3.0E33
Run       4.4E33
Run       6.3E33
Run       9.0E33
Run       1.0E34
Run       1.2E34
Run      1.2E34

HER

The ng

HER

LOM  damped!)

HOM esign)

The (roughly 3 A at 3 GeV).

Are it was easy and we
over
LLRF W

Where we started, Where we are tod

/run  LER stations   LER cavities HER stations HER cavities    I HER  I
                2                   4         4(+1 parked)   16(+4 parked)    0.6A   1.0

 1              2                   4              5                20                      0.9      1.5  
 2              3                   6              5                20                      1.0      1.7  
 3              3                   6              6                22                      1.1      1.9  
 4              3                   6              8                26                      1.5      2.5  
 5a            4                   8              9                26                      1.7      3.0  
 5b            4                   8              9                26                      1.9      2.9  
 6              4                   8            11                28                      1.9A   3.0A

 reconfigured 4 cavity -> two cavity station in Run 3, susequently added 2 cavity stations

operating configuration, gap voltages, tunes, etc. were constantly changi

 current - 2x design  LER Current -1.8x design Luminosity 4X design

 Growth rates   HER 1.2 ms-1  LER 3.0 ms-1 ( design - simulation was

 growth rates    HER  3x design  LER  growth rates   0.45 ms-1 (5.6x d

PEP-II collider holds the world record for stored charge in a storage ring

we successfully running in the feedback and LLRF areas because
designed/overestimated things?



orkshop  October 2007

Last

Plan
2E3

Man
(e.g.
opti

Exte
LLR
sugg

HER

LER

is po

• N

• C

• C
se

3000 3500 4000

A)

 

LLRF W

Predictions for 2008

 year of operations

to push from 1.2E34 to
4

y Accelerator issues
bunch length, heating,

cs, etc.)

nsive modelling of
F, Beam dynamics
ests operation at

 - 2.2A

 - 3.8 A

ssible, with

ew Driver amplifiers

omb Rotation technique

areful operating point
lection
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Run 5 Configuration
Improved Driver Amp
Comb Rotation + Improved Amp
Comb Rotation + Imp. Amp + SLAC tube
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Where are we now - LOM and HOM con

 year of Operations

 to push from 1.2E34 to 2E34 - via current increase, bunch length, optics

gitudinal stability- Data from LER 2900 mA

th/Damping rate isn’t the issue. Strange interfering signals at 1100 Hz, 
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Lessons Learned

F Modelling - key to understanding non-linear effects

on-linear klystron was less significant than drive amplifier

out models - impossible to sort out effects, see if things were worse than

els - prediction of limits, new control techniques(comb rotation)

 took years, but was invaluable

t Files - so much information

-II Experience - needs a full-time RF expert just
derstand complexities of faults

 is the customer for this information?

- transient domain measurements key to
rstanding dynamics

ibility of DSP architecture key to unexpected
ications

 Accelerator Diagnostics developed
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Summary - Lessons learned

we successfully running in the feedback and LLRF areas because
designed/overestimated things?

F and RF dynamics

omplexity of RF system, stability of low modes, operational issues - com

perational intensity, issues of constantly moving configurations (klystron

anpower/skill of operational support woefully underestimated/under sup

dband (coupled-bunch) longitudinal feedback

ssential techniques developed at ALS and other facilities - tremendous be

ery lucky (wise?) design choices for detection frequency, scalability of o

t features were essential for success

lexibility (reprogrammability, modular architecture), close ties to modell

ost important element- Creative, highly curious group with concurrent ph

iverse set of interesting challenges
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J. C  F. Marcellini, et.al.
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Longitudinal Feedback System Featur

tiprocessor architecture fully implements ALS/BESSY-II/DA NE/PEP-
irements. Scalable, flexible architecture for up to 8192 bunches with up t
.

SP processor -VME card,4 AT&T DSP 1610s

ME interface - Bus master for data distribution

ownsampler- 500 MHz A/D and VXI Sequencer

old Buffer -500 MHz D/A and VXI Ring Buffer

iming - VXI oscillators ( , , )

ront-end - Comb filter followed by  (3 GHz) phase detector - 600

ack-end - AM modulator transfers baseband kick to QPSK’ed carrier (11
96 MHz, 1375 MHz).

oftware - VxWorks operating system for configuration and control with E
terface

ata analysis in Matlab, Automated diagnostics and setup tools

ink error checking, temperature monitoring

Φ

RF 6 RF× 9 4⁄ RF×
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Kicker Timing and Ring Timing Issue

ch-by-bunch systems - require timing to synchronize to ring

RF clock (AC coupled, RF signal)
Fiducial (ECL or NIM logic) - fast to identify single bucket

t-end Issues

band detected comb output synchronized to sampling clock. Not very di
al has 1.5 ns time structure. Errors of +/- 100 ps not significant. DC motion
ed by low-frequency phase servo with 30 degree (at RF) range.

-end issues

er drive waveform is in the 1 - 1.5 GHz band. To get optimum gain, timi
/-100 ps level. For example - 1125 MHz kickers, errors of +/- 1/8 of the dr

11 ps) drop the kicker gain by 3 dB. Errors of 1/4 the drive period (+/- 22
. Requires care in setting up, and care to preserve in operation.
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Drift-Tube Kicker Impulse Response

 Counter-Propagates with travelling RF signal
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Kicker response reconstruction from a timing sweep at ALS
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Grow/damp measurement example fro

 ms long data set with 15 ms open-loop section.

filled bunches participate in the modal motion.
sformation to the even-fill eigenmode basis
lifies the picture - there are three strong eigenmodes
is transient. Fitting complex exponentials to the

al motion we extract estimates of the modal
nvalues for both open and closed-loop parts of the
ient.

ngle measurement like this only characterizes the
bilities and the feedback at a single accelerator
ating point.

ery powerful technique is to measure modal
nvalues as a function of beam current, RF system
iguration, etc.
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Ultimate/Practical Limits to Instability Con

t Limits the Maximum Gain (e.g. fastest growth rate, or allowed impeda

ral Mechanism

oise in feedback filter bandwidth, limits on noise saturation. Gain is from

t End (BPM to baseband signal) gain limited by required oscillation dyna
ts (synchronous phase transients, orbit offsets)

essing Block - gain limited by noise in filter bandwidth. Quantizing nois
em limit - noise from RF system or front-end circuitry may also contribu
 with broadband noise. Broad filter bandwidths help with reduced sensiti
ating point - or variations of dynamics with current

er stages - gain scales with kicker impedance, sqrt(output power). An exp
 (more kickers, more output power).

ut power (actually maximum kicker voltage) determines maximum osci
h linear (non-saturated) control is possible. Saturated behavior is compli
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imate/Practical Limits to Instability Control

tability of the feedback loop itself, (e.g. limits on phase shift and gain vs

ted to time delay between pickup, processing, and actuator

circular machines (systems with kick signal applied on later turn than pic

t set by revolution time, fastest growth rates, and filter phase slope over c

ropriate for optimal  control theory applications

LQR

Robust Control

Uncertain Systems

ative group delay over a portion of the frequency band is possible, but for
rice in increased phase slope away from the negative region
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