Some possible challenges for modeling
soft x-ray spectra on the nanoscale

Eric L. Shirley, NIST, Gaithersburg, USA

Soft x-ray spectra: absorption or (resonant) inelastic scattering

(- local atomic geometry for TM/RE ions,
insight . - oxidation states of TM/RE atoms,
into 1- well tuned to C 1s, O 1s, TM 2p edges,...
- vibrational effects, lifetimes...efc. need for large-scale

Discussion points: computing, and
- nanoscale systems: small or large? / scalable algorithms

large from a modeling viewpoint

need for “embedding”

- coupling to the outside world techniques to “place” the
image charges, dipoles, / “crucial” part of a
electron gain/loss to surroundings, nanoscale system
“truncation problem” in its environment
Examples:

- semiconductor nanocrystal (from G.W. Bryant, NIST)

- transition metal/rare-earth ions in ligand cages Strawperson conclusions:

- core hole screening in a complex system (1) modeling will be hard

(2) we know strategic areas for development



Modeling of electronic/optical excitations:

- detailed band structure, many-body corrections to band structure
- electron/hole-state lifetime damping effects
- electron-hole interaction in excited state (= 2-particle e.0.m.)
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MgO optical constants:
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For light propagating along (1,1,0) direction, refractive

index difference for polarization along (1,—1,0) vs. (0,0,1)
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Intrinsic Birefringence of Cak,, SrF,, and BaF,

Intrinsic Birefringence (10'7)
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* Values very small for CaF, in visible — why not observed previously.
* Large for A=157nm (>> 157nm target and 193nm target): 1/A? scaling + excitonic effects.
» Sign for CaF, opposite that for SrF, and BaF, (sign change for CaF,).
* Remarkable agreement with first-principles calculation (curve).
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Multiplet effects in 3d-oxide L, ; spectra:

Example: Ti L, ; in SrTiO

3| or (TiOZ)** in

J. EL. Spect. 144, 1187 (2005)

a larger system

This work: Bethe-Salpeter solid-state calculation:
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charge-transfer satellites: how do we extend
the calculation to include the environment without losing tractability?



potential contribution (eV)

Not necessarily nanoscale, but a new way of thinking:

Consider screening of an oxygen 1s core hole in HfO,.

Traditional calculation:
RPA screening

* Reciprocal-space
* O(N3) calculation

* double-sum over el. states
for response function

* Description of potential
with same [poor] level of
detail everywhere
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New calculation (in progress):

RPA screening, but...
* Real-space method

* O(N?) calculation

* single-sum over el. states

for response function

(imaginary axis contour integral)

* Detailed potential only on site

* long-range effects treated in

model dielectric function
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These types of innovation

can help overcome the
long-range, non-local effects

of electron wave functions,

and allow one to “truncate”

or decouple a quantum
subsystem from its environment.

Detail of screening:

50 : . ; :
45 t [total] valence 4
screening effect
40 , (points=V,+V,, T
35 F 1 line=RPA reference) |
30 r II"-H V,=screening of 1
25 |+ +echarge shell ]
\ at R=0.24 nm
20 .
V,=screening of
R modified V i
10 + / 1
< ST .-.IJI:L.LLHM&. —
\0\ 1 1 1

0.0 0.1 0.2 0.3 0.4

distance from O nucleus (nm)



