2016 Neutron Experiment descriptions:

N1: Triple-Axis Spectrometers, HFIR HB-1A & HB-3

Spin wave and phonon dispersion in Fe-Ga solid solutions

Fe-Ga alloys with appropriate composition and heat treatment, exhibit giant magnetostriction in a polycrystalline and ductile form. The tetragonal magnetostriction coefficient, \(\lambda_{100} \), of Fe-Ga can be up to 15 times that of pure Fe. This makes these materials of tremendous scientific and technological interest for use in devices such as actuators, transducers and sensors. Elastic constant measurements show that the shear elastic constant \(\frac{1}{2}(C_{11}-C_{12}) \) decreases with increasing gallium concentration and extrapolates to zero at approximately 26 at.% Ga. The slope of the phonon dispersion curve at low-q of the \(T_2[110] \) branch is a measure of that elastic constant and hence the interest in measuring phonons in these materials. With the large magnetoelastic interactions in such a material, it is also of interest to measure the spin wave dispersion. The triple-axis spectrometers HB-1A and HB-3 will be used to measure both phonon and spin waves of two compositions of Fe-Ga alloys.

N2: Powder Diffractometer, HFIR HB-2A

Magnetic structure of NiO

Neutron diffraction measurements will be performed to investigate the onset of long-range magnetic order in NiO. Data will be collected at various temperatures, ranging from 600K to 288K, using the Neutron Powder Diffractometer at the HFIR. Rietveld analysis of the crystal and low-temperature magnetic structure will be carried out using FullProf Suite software. The results obtained will be discussed and compared with those reported in earlier studies.

N3: Four-Circle Diffractometer, HFIR HB-3A

Structure and lithium-ion motion in the triphylite LiFePO\(_4\) studied by single crystal diffraction

Triphylite, Li(Fe,Mn)PO\(_4\), is a promising cathode material for lithium ion batteries due to its virtues of low cost, better safety characteristics and environmental friendliness. But it also faces a significant challenge to achieve both high reversible lithium storage capacity and rapid ion and electron transport capabilities for large-scale EV applications. Studies on the lithium-ion motion properties will help to understand the lithium conduction mechanisms in a lithium ion battery. Using single crystal neutron diffraction, we will resolve the structure of a natural triphylite single crystal at several selected temperatures. Besides the nuclear structure, we are also able to give the magnetic structure at the temperatures lower than its transition temperature. Fullprof and Shelx will be used to refine both nuclear and magnetic structures.
N4: WAND powder/single-crystal diffractometer, HFIR HB-2C WAND

Diffuse magnetic scattering in Ho$_2$PdSi$_3

When a neutron beam is diffracted by a sample without translation symmetry the resulting diffraction pattern still carries information. For instance scattering from a liquid will have a maximum in intensity on the average distance between two particles. In solids, regular stacking faults, intercalated atoms or defects can result in diffuse scattering and the analysis of these scattering patterns is important for understanding the real structure. Diffuse scattering in magnetism can occur in systems where the magnetic exchange interactions allow only degenerate ground states, or where the minimization of energy cannot be achieved for all related magnetic moments. Still, the diffuse scattering can be analyzed to understand the underlying exchange interactions. In this experiment we will investigate the diffuse scattering pattern of a geometrically frustrated rare-earth intermetallic Ho$_2$PdSi$_3$. From the diffuse scattering pattern, the spin-spin correlation function is deduced using a reverse Monte-Carlo approach. The spin-spin correlation function is then used to determine the ordered magnetic ground state. Results between simulation and magnetic ground state are used to evaluate the advantages and limitations of this technique. The experiment will include the careful hands-on set-up of the sample at the experiment using a neutron camera and goniometer, and the data treatment for the Monte-Carlo simulation.

N5: Neutron Imaging Station, HFIR CG-1D

Neutron tomographic investigation of sphere packing

The principle of neutron imaging is based on the attenuation from both absorption and scattering, of a directional neutron beam by the matter through which it passes. Neutron imaging is complementary to other imaging techniques such as X-rays. X-rays are scattered and absorbed by electrons, so absorption and scattering increase monotonically with atomic number. Additionally, x-rays have limited penetration depth for high atomic number materials. Neutrons, on the other hand, interact with nuclei and their scattering power does not vary in any regular way with atomic number, and can penetrate the bulk samples. Several areas of research already benefit from neutron imaging, such as engineering, advanced material characterization, fluid-flow and/or two-phase flow devices, automotive technology, advanced manufacturing technology, applied sciences, aerospace, life and biological sciences, national security applications, etc. Neutron tomography is a unique tool where we can glimpse in the bulk of the assembly of monodispersive precise spherical particles made out of steel. It is of interest to do systematic investigation of the sphere packing and possible demonstration of the order-disorder transition from the random close packing to the crystalline close packing. We address the following questions: What are the highest packing densities dynamically reachable by shaken sphere packing? Does spontaneous crystallization occur? If so, what are the dynamical regimes facilitating this?
Micellar morphologies in self-associated triblock copolymer solutions: effects of concentration and contrast matching in porasils

The PEO-PPO-PEO triblock copolymers have important applications in industry and medicine. Because of the different solubilities of PEO and PPO in water, these copolymers exhibit a rich phase behavior that is sensitive to polymer concentration, solvent ionic strength, temperature, and pressure. These phase changes occur by the self-assembly of the polymer chains into structures with characteristic length scales of the order of few nanometers. Thus, small-angle neutron scattering (SANS) is a technique uniquely well-suited to studying this phase behavior. In these experiments we will study the effects of concentration and ionic strength on block copolymer self-assembly using solutions of 1, 2, and 5 wt% Pluronics F108 triblock copolymer in D$_2$O with varying concentrations of salt added, one series in which the anion is the same and the cation is varied, and another where the reverse is true. The size, morphology, and aggregation number of the micellar structures will be extracted through nonlinear least-squares fitting of the scattering data to model functions.

Contrast-matching SANS has been widely used to characterize structure of soft and biological matter as well as pore accessibility in porous materials. The particular advantage of this technique is attributed to the large difference in coherent scattering lengths of hydrogen and deuterium. By changing composition of protonated and deuterated solvent (such as H$_2$O and D$_2$O), one can vary the average scattering length density of the solvent and hence vary the contrast between the scattering objects and surrounding medium. In this experiment, three porasil samples (porous silica) with different H$_2$O/D$_2$O ratios (empty pores, i.e., full neutron contrast), pores filled with 71% H$_2$O + 29% D$_2$O (intermediate neutron contrast) and 42%H$_2$O + 58%D$_2$O (zero-average contrast)) will be measured to demonstrate the power of contrast matching SANS technique.

Introduction to Pair Distribution Function analysis

The Nanoscale Ordered Materials Diffractometer (NOMAD) is designed for the determination of pair distribution functions (PDF). The PDF is a measure of the probability to find an atom B at a distance r away from arbitrarily chosen central atom A relative to a random arrangement. As such it is a measure of the atomic arrangement of the sample independent of periodicity and therefore the PDF formalism can be applied equally to liquids, glasses, nanomaterials and long range ordered crystalline materials.
We will determine the PDF of glassy SiO$_2$ and fit a Continuous Random Network model to it. We will perform an isotope substitution experiment for BaTi$_2$O$_5$. We will introduce real-space fitting using the ‘small-box’ refinement program PDFgui, modeling the PDF of diamond, crystalline SnO$_2$, and SnO$_2$ nanoparticles. We will also introduce the levitation sample environments at NOMAD for container-less and high temperature neutron scattering, performing a laboratory experiment with a melt.

If the students would like to analyze NOMAD data on their own samples (~100 mg minimum size needed), that will be possible during the neutron school session provided the students use the mail-in proposal program by July 17th (https://neutrons.ornl.gov/nomad/mail-in). They should specify in the proposal that this is related to the 2016 NXS. Once the proposal is submitted the beamline team will be in touch to work out the logistics.

N8: BASIS Backscattering, SNS BL-2

Diffusion dynamics of protons in a novel ionic liquid designed for proton-exchange membranes

Protic ionic liquids show great potential for mobile fuel cell applications. They possess appealing features such as almost negligible vapor pressure, the characteristic electrical conductivity of an ionic conductor, and a sizable temperature gap between the melting and decomposition points. The diffusion dynamics of protons in these complex liquids are closely tied to their performance as electrolytes. Quasielastic neutron scattering (QENS) is a technique of choice for studying the details of diffusion dynamics of hydrogen because of (1) the large incoherent scattering cross-section of hydrogen compared to other elements and (2) capability of probing spatial characteristics of diffusion processes through dependence of the scattering signal on the momentum transfer, Q. The latter is a clear advantage of QENS compared to, for instance, NMR. In our QENS experiment to be performed on the new SNS backscattering spectrometer, BASIS, we will utilize the Q-dependence of the scattering signal to identify and analyze several dynamic processes involving diffusion motions of hydrogen atoms in a recently synthesized ionic liquid [H$_2$NC(dma)$_2$][BETI].

N9: Inelastic Neutron Spectroscopy - INS (VISION), SNS BL-16B

High-resolution vibrational spectroscopy with neutrons

The spectroscopic technique implemented at the VISION beam line will be discussed and related to other neutron scattering methods and to Raman- and IR- spectroscopy, the experimental procedures at VISION will be introduced. We will prepare two samples for use at VISION - Zirconium hydride (ZrH$_2$) and Toluene. Vibrational data will be collected at low temperature (5K). The raw data will be reduced and normalized with respect to the incident beam spectrum with python based script running in the Mantid framework. The resulting energy transfer spectra will be compared with Raman and/or IR
data and data from BL18 (ARCS) if time permits. The spectra will also be compared to theoretical spectra obtained with CASTEP (first-principles quantum mechanical calculations based on plane-wave basis sets and pseudopotential). The expected neutron data can be predicted based on CASTEP results using the a-Climax software.

N10: Magnetism Reflectometer, SNS BL-4A
Revealing magnetism in thin films of normally non-magnetic materials

Understanding the magnetic properties of complex materials near surfaces and interfaces critically important for the development of functional nanostructures and devices. To investigate such structures, where the magnetic layer is only a few unit cells thick and buried within a material, polarized neutron reflectometry is clearly the method-of-choice. During the last two decades Polarized Neutron Reflectometry (PNR) has become a powerful and popular technique in the study of properties of thin films and multilayers. Recent studies show a strong influence of interfaces on the magnetic properties of thin films, leading to behaviors that are radically different from those of bulk materials. Students will apply polarized neutron reflectometry to study interfacial magnetism in a LaMnO$_3$-thin film epitaxially grown on a SrTiO$_3$ substrate. They will mount the sample in the Displex and will learn how to align the sample in the neutron beam of only 50 microns thick. First PNR measurement will be performed at room T. Then the sample will be cooled to 5K and the measurement will be repeated. The students will process the data using the data reduction programs and will compare the results of the two experiments. With this practice, students will learn polarized neutron reflectometry set-up, in-situ data reduction from 2-D intensity maps, and understand the evolution of properties in thin films with temperature.

N11: Liquids Reflectometer, SNS BL4B
Polymer self-diffusion studied by specular reflectivity

Isotopic substitution is a powerful tool in neutron scattering studies. In this experiment we will observe the self-diffusion of polystyrene (PS) by means of a 500-Å-thick deuterated (dPS) layer float-deposited atop a spin-coated 500-Å-thick protonated PS layer on a silicon substrate. Students will prepare the film in the beamline 4B wet lab and measure specular reflectivity. We will then anneal the sample for ~30 min in a vacuum oven and re-measure the reflectivity. Students will fit the data from the two runs to observe changes in the interfacial width of the dPS/PS.

N12: VULCAN Engineering Materials Diffractometer, SNS BL-7
In-situ neutron diffraction measurement of intergranular strain evolution in 316 stainless steel under uniaxial loading

Anisotropic materials such as stainless steels will develop strong intergranular strains in the regime of plastic deformation. Neutron diffraction allows strain/stress measurement at
depth by its high penetration through most engineering materials. The lattice strains of different lattice plane can be calculated by Bragg peak shift with respect to zero strain/stress a reference. At the Spallation Neutron Source, VULCAN can probe changes of lattice strain of all possible hkl directions under in-situ loading. In this experiment, a cubic fcc stainless steel dog-bone sample of 6 mm in diameter will be applied tensile loading continuously up to 5% engineering strain by using the VULCAN MTS load-frame, in the meantime neutron diffraction pattern of the steel sample will be collected. The neutron data will be separated and reduced based on the load intervals. Single peak refinement will be used for analyzing the intergranular strains of (111), (200), (220) and (311) lattice planes in the material under uniaxial loading. Through this practice, students will learn in-situ loading neutron diffraction measurement set-up at VULCAN; lattice strain data calculation from diffraction pattern using VDRIVE software, and understand the nature of intergranular strain evolution of material under loading.

N13: POWGEN Powder Diffractometer, SNS BL-11A

Powder Neutron Diffraction for crystal structure refinement and quantitative phase analysis

The student groups will have the opportunity to fill a sample holder with sample powder and perform a helium gas pump-purge of the holder, readying it for neutron diffraction with our POWGEN Automatic Changer (PAC) sample changer. They will learn how to set up a run using the Data Acquisition System (DAS). Afterwards they will learn Rietveld refinement using Powgen time-of-flight (TOF) neutron diffraction data. Exercises will include

- Sample 1: A simple structure (Ni or LaB₆) to introduce TOF refinement concept.
- Sample 2: Quantitative phase analysis (NIST standard 674b: a mixture of ZnO, TiO₂, Cr₂O₃ and CeO₂).
- Sample 3: For those who want to refine a more complex structure, we will look at several models to determine the true crystal structure of Ba₂CuWO₆, which shows a Jahn-Teller distortion.
- Sample 4: Finally, those who get through the first three examples will be able to learn how to do sequential refinement for temperature scans of ZrW₂O₈.

N14: Wide-Angular Range Chopper Spectrometer (ARCS), SNS BL-18

Dynamics of metal hydride systems: Harmonic oscillators and beyond

The hydrogen in zirconium hydride (ZrH₂) sits at the interstitial positions between the zirconium. In the simplest description, the energy levels can be considered to be the same as a particle in a potential well. The aim of this experiment is to measure the vibrational spectrum of ZrH₂ as a function of energy and wavevector transfer, and determine how well it conforms to the predictions of the scattering from a harmonic oscillator. Practical applications of sample preparation, data collection and analysis will be given to generate the scattering function S(Q,ω) from the data. This will be compared
to theoretical predictions based on the harmonic oscillator description, with a discussion of what may cause any discrepancies found. As time permits, other samples or experimental conditions (temperature, incident energy) will be measured to highlight differences in the energy spectra.

N15: TOPAZ Single-crystal Diffractometer, SNS BL-12

High-resolution single crystal structure analysis from 3-D mapping of reciprocal space using TOF Laue diffraction

We will practice the experimental setup, data collection, data reduction procedures and perform a structure refinement of a high-resolution single crystal data set of scolecite measured on TOPAZ using neutron wavelength-resolved TOF Laue technique. Scolecite (CaAl$_2$Si$_3$O$_{10}$·3H$_2$O) is the calcium member of the natrolite family within the zeolite group. The cation interaction with the framework oxygen bonding plays an important role in fine tuning the adsorption and electrostatic properties of the porous zeolite channels, which is fundamental for applications in separation science and energy storage materials. Single crystal data collection strategy will be optimized with the locally developed CrystalPlan program; peak integration will be performed in 3D Q-space (reciprocal space) in Mantid. Data reduction including neutron TOF spectrum, detector efficiency, and absorption corrections will be carried out with the ANVRED3 program. The structure will be refined using GSAS. The option to refine the neutron structure in SHELX 2014 will also be explored.
2016 X-ray Experiment descriptions:

X1: High Energy X-ray Scattering for Strain Measurement, 1-ID

“Texture and strain measurement in polycrystalline materials using high energy x-rays”
Jun-Sang Park and Jonathan Almer

Polycrystalline materials encompass large groups of materials such as metals, ceramics, and minerals are employed in wide range of applications. To predict the performance of these materials, it is important to understand the structure–processing–properties relationship. High energy x-ray combined with fast area detectors is an attractive non-destructive tool to investigate this relationship in a polycrystalline material. In this experiment, we will use high energy x-rays to measure the lattice strains and texture in a polycrystalline sample under in-situ mechanical loading.

X2: X-ray Tomography, 2-BM

"Effects of propagation phase contrast imaging low contrast samples "
Carmen Soriano Hoyuelos

Propagation phase contrast effect is a very powerful technique when imaging low contrast objects, in which the density of the different components is very similar. This is the case of most part of biological samples, such as soft tissues, embryos, medical samples and so on. In this experiment, we will evaluate the differences between using an absorption vs a propagation phase contrast protocol in biological materials (bone and soft tissue). We will show how x-ray tomography is performed including basic tomography principles, sample mounting and alignment, data collection, data analysis and 3D rendering.

X3: Nuclear Resonance Scattering, 3-ID

“An introduction to NRIXS”
Michael Hu and Ercan Alp

Nuclear Resonant Inelastic X-ray Scattering (NRIXS) is a spectroscopy method to study atomic vibrations and dynamics, currently done with synchrotron radiation at a few high energy third generation facilities. It finds a wide range of applications in condensed matter physics, materials science, chemistry, biophysics, geosciences, and high-pressure researches. In an NRIXS experiment, one measures the number of nuclear resonant absorption events as a function of energy transfer from an incident x-ray beam to the sample under study. Vastly disparate energy scales involved in nuclear excitations (many keV) and atomic lattice excitations (tens of meV) implicate the decoupling of these two processes. NRIXS can be described as nuclear resonant excitation plus phonon annihilation or creation. As a result, on the scale of the energies of phonons, the energy of nuclear resonant absorption is modified only through atomic motions in a sample. The
unique aspect of using resonant isotopes to measure phonon energies is mainly the selectivity. This means that vibrations can be probed locally in systems that have resonant isotopes in specific places, e.g., bio-molecules like myoglobin, thin films, and materials under extremely high pressure. Many atomic dynamics and lattice thermodynamics information can be derived from NRIXS measurements. Phonon Density of States (DOS) characterizes lattice dynamics of a material and can be derived under the quasi-harmonic approximation. Combined with modeling and simulations, results from NRIXS can provide unique and clarifying insights into many fields of research.

X4: X-ray Magnetic Circular Dichroism - 4-ID-C or 4-ID-D

“Element selective magnetization measurements using XMCD”

Yong Choi, John Freeland, David Keavney and Daniel Haskel

X-ray magnetic circular dichroism (XMCD) measures the difference in absorption of circularly polarized x-rays by a magnetic material. This technique can be used to extract element and orbital specific magnetic information. In this experiment spectra will be taken at either the soft (C) or hard (D) x-ray beamlines on APS-4-ID. Most of the absorption edges that probe the primary magnetic electrons (3d and 4f) lie in the soft x-ray portion of the spectrum, which requires a windowless UHV (soft x-ray) beamline. Using soft x-rays, XMCD spectra will be taken of a tri-layer film. The XMCD spectra as a function of applied magnet field will be taken for different elements to determine the field required to switch individual layers in the material. Using hard x-rays (~11 keV), XMCD spectra from a nominally non-magnetic layer will be measured to study induced magnetism in a multilayered thin film.

X5: X-ray absorption spectroscopy measurements at 5-BM-D

Denis Keane and Qing Ma

X-ray absorption spectroscopy techniques have been widely used in the research activities of multiple disciplines, for example chemistry, chemical engineering and environmental science. These techniques are also very versatile and can be adapted to suit a variety of sample conditions, including bulk, thin film, powder, and liquid. Measurements can be carried out through various channels or modes such as absorption, fluorescence, electron yields, etc., and in various geometries from normal incidence geometry (for transmission or grazing exit fluorescence measurements) to grazing incidence geometry. We will demonstrate elemental selectivity and chemical speciation in several types of samples including bulk mixtures and thin films.
X6: Energy Dispersive X-ray Diffraction, 6-BM

“Energy Dispersive X-ray Diffraction”
John Okasinski

The energy-dispersive x-ray diffraction (EDXRD) configuration enables one to selectively measure scattering from a discrete 3D volume within a larger bulk sample and surrounding environment. This is achieved through the use of a polychromatic incident beam and measuring at a fixed scattering angle with an energy-dispersive detector. The gauge volume attained creates the opportunity to map both crystalline phases and strain in complex samples. Three examples that make use of this technique include: mapping the progress and heterogeneity of the electrochemistry within a battery; mapping the strain in a structural component, such as near a weld joint; a sample confined inside of a complex environment, such as a furnace or large volume, high pressure cell.

X7: Magnetic X-ray Scattering, 6-ID

“Resonant magnetic x-ray scattering from a rare-earth compound”
Zahir Islam and Jong-Woo Kim

This experiment will review the fundamentals of aligning a single crystal in a diffractometer. Magnetic Bragg diffraction peaks from a single crystal of a rare-earth compound will be measured and their intensity compared to that of the structural charge peaks. The order parameter and propagation vector of the magnetic peak will be measured as a function of temperature and in external fields.

X8: Radiography, 7-BM

“Time resolved radiography of liquid fuel sprays”
Alan Kastergren

Multiphase flows are critical to numerous technologies we depend upon. For example, liquid sprays have a large impact on the performance of internal combustion engines and liquid rockets. These flows are typically opaque to visible light, which makes measurements of these flows challenging. Time-resolved x-ray radiography has been developed over the past 15 years at Argonne to quantitatively probe these flows, and now represents one of the best ways to study dense multiphase flows. Students will use radiography to probe the structure of a commonly used spray flowfield as a function of space and time.
X9: Time-Resolved X-ray Diffraction, 7-ID

"Time-resolved x-ray diffraction"

Don Walko

This experiment will consist of laser-pump/x-ray diffraction-probe measurements of crystalline solids. An ultrafast Ti:sapphire laser can be used to excite a variety of materials systems. X-ray Bragg diffraction is used to probe the response of crystalline matter to the laser, with a time resolution limited by the length of APS x-ray bunches (~100 ps). The laser is synchronized to the APS accelerator, with electronics that can vary the delay time between the arrival of the laser and the x-rays at the sample. In this experiment, the laser will be used to heat a thin metal film grown on a transparent substrate. The time-dependent shift of the film Bragg peak will act as a thermometer for the film, from which the conductance of the film/substrate interface will be measured.

X10: Grazing Incidence Small-Angle X-ray Scattering (GISAXS), 8-ID-E

"GISAXS from organic photovoltaic thin films"

Zhang Jiang, Joseph Strzalka, Wei Chen

Since their introduction in the mid-90’s, organic photovoltaics (OPV) based on the polymer:fullerene bulk heterojunction (BHJ) have become a fast-growing area of research, resulting in steady improvement in solar cell efficiencies from approximately 1%, approaching the 10% efficiency expected to result in their widespread commercialization. This inexpensive and scalable technology promises to play an important role in meeting the world’s energy needs. Understanding and further optimizing OPV technology requires, in part, insights into how the morphology of these thin film devices affects their function, and how different processing conditions influence the morphology and hence the solar cell efficiency. Grazing incidence x-ray scattering (GIXS), which can non-destructively probe statistically meaningful regions and reveal hierarchical structure on lengthscales varying from Ångstroms to hundreds of nanometers on surfaces or buried interfaces, has become an essential tool for this effort. Participants will measure and analyze GIXS from thin film samples of typical OPV material processed under different conditions, thereby gaining direct experience of the kind of information that can be gained from these measurements, as well as familiarity with the hardware and software in use at 8-ID-E.

X11: X-ray photon correlation spectroscopy, 8-ID-I

"X-ray photon correlation spectroscopy study of dynamics in colloidal suspensions"

Alec Sandy and Suresh Narayanan

X-ray photon correlation spectroscopy (XPCS) is a well-established technique to study the equilibrium dynamics in soft and hard matter systems. XPCS has been successfully applied to study dynamics in colloidal suspensions, nanoparticle dispersion in polymers,
polymer thin films, etc. XPCS uses the partially coherent nature of the synchrotron beam to probe speckles and its fluctuations in time. By using a 2-D detector such as a CCD, the dynamics over a range of length scales in the range of 100 nm - 10 nm can be probed simultaneously.

In this experiment, a colloidal suspension of silica spheres in the size range of 100 nm dispersed in a viscous solvent like glycerol will be studied. By varying the particle concentration, single particle Brownian diffusion and the effect of particle interactions will be studied.

X12: X-ray Absorption Near Edge Spectroscopy - 9-BM

“*Auto forensics: XANES analysis of catalytic converters*”

Tianpin Wu, George Sterbinsky, Steve Heald

All automobiles have catalytic converters, which are important for controlling emissions. All catalytic converters contain a catalyst. When a catalyst fails, it is rarely due to a problem with the converter. It is typically a symptom of something else. This experiment will demonstrate how spectroscopic techniques can be used to determine what materials are in a spent catalyst from a catalytic converter. This information can in turn be used to deduce what may have been wrong with the automobile engine. For a fragment of catalyst obtained from a local muffler shop, an energy-dispersive detector will be used to identify the elemental composition through the use of calibration foils. Then, the XANES of select elements will be obtained, and chemical fingerprinting will be used to identify the compounds. The students will be guided through the process of coming up with a hypothesis as to “what killed the car?”

X13: Ultra-Small Angle X-ray Scattering, 9-ID

“*USAXS/SAXS/WAXS studies of structure of common materials*”

Jan Ilavsky, Ross Andrews

This instrument provides a unique facility for ultra-small-angle, small-angle, and wide-angle scattering studies over an unprecedented range of length scales within a single measurement—from less than Ångstrom to few microns. Engineering materials (e.g. metals, polymers, ceramics, etc) often exhibit complex, hierarchical, microstructures spanning this wide range of sizes. Students will become familiar with this unique technique and measure selected examples of materials they may use during their day-to-day life, such as toothpaste, food fats, cheese etc. Analysis of the USAXS data using general purpose Irena software will be showcased as part of the experiment.
X14: Synchrotron Powder Diffraction, 11/17-BM

"Hands-on high resolution and in-situ powder diffraction measurements & analysis"

Saul Lapidus, Wenqian Xu & Andrey Yakovenko

X-ray powder diffraction is a versatile technique that reveals detailed information about the chemical composition and crystallographic structure of materials, and affords great flexibility for in-situ studies of samples under non-ambient conditions. In this experiment, students will gain hands-on experience with all aspects of modern synchrotron powder diffraction experimentation, from sample preparation to strategies for data collection, processing, and analysis. Students will become familiar with the world-class suite of dedicated powder diffraction instruments offered at the APS, including both high-resolution and two-dimensional area detector measurements, as well as a wide range of in-situ sample environments. They will learn how to access and use these tools to address scientific challenges related to their own research. The second day of this experiment will include an interactive tutorial on data processing and Rietveld analysis using the software package GSAS-II, including the determination of crystallographic structural details from powder diffraction data measured on the first day of the experiment. While this experiment is intended for those new to synchrotron-based powder diffraction, in depth questions will also be addressed if time permits.

X15: Pair Distribution Function, 11-ID-B

"Pair distribution function measurements with high-energy X-rays."

Olaf Borkiewicz, Kamila Wiaderek, Kevin Beyer, Peter Chupas, Karena Chapman

Pair distribution function (PDF) analysis measures local atom structure as the distribution of atom-atom distances from Ångstroms up to several nanometers. A strength of the technique is that it does not assume translational symmetry of the structure, as required for traditional crystallographic approaches, and thus PDF can be applied to study disordered, crystalline, amorphous, nanoscale, homogeneous and heterogeneous materials alike. Experimentally, the PDF is derived from a specialized powder diffraction measurement in transmission geometry: High-energy X-rays are used to measure the structure function to a high value of momentum transfer, \(Q \). Further normalization of the structure factor and subsequent direct Fourier transformation will yields the Pair-Distribution-Function (PDF). This experiment will cover strategies for data collection and processing, and simple modeling approaches. We will explore how the experimental variables (beam energy, beam/sample size, detector distance, capillary composition) impact the quality and resolution of the resulting data.
X16: Small Angle X-ray Scattering, 12-ID-B

"Small Angle Scattering (SAXS) of biological, organic and inorganic systems."

Xiaobing Zuo, Byeongdu Lee

Small angle X-ray scattering (SAXS) and Grazing incidence SAXS (GISAXS) are the scattering techniques to determine nanoscale structures and provided at 12-ID-B stations of APS. Examples of research experiments performed at the beamline include in-situ nanoparticle growth, in-situ monitoring nanoparticle catalyst under reaction, block copolymer morphology, aggregation of charged polymers, self or directed assembly of nanoparticles, structure of gel, conformation of protein and RNA, nano and bio hybrid materials, and so on. In this experiment, the beamline and its capabilities will be introduced, and measurements will be carried out on a variety of different samples, i.e., proteins or polymers or nano-particles or nano-particle assemblies. The data will be analyzed and interpreted.

X17: X-ray Fluorescence Microtomography 13-ID-E

"Imaging the interior metal distribution of seeds"

Matt Newville and Antonio Lanzilotti

Metals like K, Ca, Mn, Fe, and Zn are important nutrients in plants and seeds, playing different biological roles. Determining what factors control the transport and distribution of these metals in seeds can give important clues to understanding plant genetics and diseases. X-ray Fluorescence (XRF) is highly sensitive to low metal concentrations, and an X-ray micro-beam can give XRF spectra with very high spatial resolution for thin, dense samples. However, the penetrating power of X-rays into light material such as seeds means that a micro-XRF spectrum will average over considerable depth, blurring the spatial resolution. In this experiment, we will combine Computed Microtomography and X-ray Fluorescence, using both the imaging and spectroscopic properties of X-rays. A seed will be rotated and translated through a micro-focussed X-ray beam allowing a virtual slice to be made for each elemental distribution within the seed. The experiment will include mounting and centering the sample, processing the X-ray fluorescence spectra and performing tomographic reconstruction.

X18: X-ray liquid surface scattering, 15-ID-C

“Biomolecules at air-water interface”

Binhua Lin, Mati Meron and Wei Bu

Many biochemical processes and reactions occur at liquid surfaces and interfaces. These include interactions between cells and the extracellular matrix, protein interactions at cell and organelle membranes, gas transfer at the lung tissue-air interface, and drug intake by cell membranes. Synchrotron x-ray surface scattering techniques are used to determine
structure on the subnanometer length scale at soft, hydrated interfaces of biological interest. The goal of this experiment is to determine the structure and ordering of a Langmuir monolayer of phospholipid molecules, Dipalmitoylphosphatidylcholine (DPPC), which is the major constituent of lung surfactant (a Langmuir monolayer consists of a single layer of amphiphilic molecules supported at the air-water interface). We use Langmuir trough method to prepare the monolayer of DPPC at the surface of water. X-ray reflectivity (XR) techniques will be used to measure the electron density profile (or structure of the monolayer) normal to the surface of water, and grazing incident x-ray diffraction (GIXD) will be used to measure the packing of the lipid molecules along the water surface. Results of those measurements will then be analyzed through model fitting routines to determine the molecular structure and packing of the lipids at the surface of water.

X19: High-Pressure Powder Diffraction, 16-BM-D

"Pressure-induced structure phase transition in ZnO"

Changyong Park and Dmitry Popov

Pressure is a powerful tool to investigate materials’ physical properties like hardness, elasticity, and strength. It can be used to adjust the electrical conductance and magnetism, sometimes leading to a discovery of new superconducting materials with help of combined cryogenic cooling. It also can cause reversible or irreversible phase transitions when the range of pressure is extended beyond the stability field, which many times lead to a discovery of new materials. In the solid state, the range of pressure to cause these physical changes typically goes far to GPa level (Giga Pascal, 1 Pa = 1N/m^2), for which we need to use a special apparatus, Diamond Anvil Cell (or DAC). In this experiment, students will perform high-pressure powder x-ray diffraction with a pre-loaded DAC sample and learn how it helps to study the materials physical property. The pressure-induced volume contraction and eventually the phase transition in ZnO will be demonstrated and an entry level lattice parameter refinement will be exercised to quantitatively describe the observation.

X20: Fundamentals of beamline operation, 20-BM

“Fundamentals of beamline operation and Cu XAFS”

Steve Heald and Chugjun Sun

There are several parameters that need to be optimized for successful experiments. In the case of x-ray spectroscopy, the most important include the energy resolution, harmonic content, and sample quality (thickness and uniformity). We will work through setting up a beamline, and run several “hands on” exercises looking at these parameters and how they affect the final data. Once the beamline is characterized and properly set up, it will be used to measure two types of Cu samples. An oriented high Tc superconductor sample will be used to illustrate the utility of using the x-ray polarization to isolate signals from
the in-plane and out-of-plane bonds. Linear combination fitting of both the EXAFS and XANES will be demonstrated by fitting the data for an arbitrarily oriented sample. We will also measure the Cu foil EXAFS and fit it with the FEFF theory to demonstrate theoretical fitting. Analysis will be done using the Demeter software that can be downloaded from http://bruceravel.github.io/demeter/. Prior experience in synchrotron experimentation is desirable.

X21: Grazing Incidence Interface Diffraction, 33-BM

“Exploring 3-D Reciprocal Space: a Powerful Tool to Answer Basic & Applied Materials Science Questions”
Evguenia Karapetrova

The synthesis of complex oxide superlattices with single unit cell control and atomically sharp interfaces has opened new routes to stabilizing collective ordering phenomena in materials. Heterostructures of dissimilar complex oxides have received considerable interest due to the novel interfacial properties that emerge resulting from the competition between the spin, charge, or orbital ground states of the adjoining compounds. Superlattices can exhibit magnetic ordering temperatures that much higher than those measured in compositionally equivalent alloys. This experiment will use grazing incidence x-ray scattering to measure the structural properties of the superlattice and how it is related to the magnetic order.

X22: Coherent X-ray Diffraction Imaging, 34-ID-C

“Coherent X-ray Diffraction Imaging of Nanocrystals”
Ross Harder

The high brightness, and resulting high degree of coherence, of modern synchrotron x-ray sources has enabled the development of advanced x-ray imaging techniques. Coherent x-ray diffraction (CXD) imaging exploits the coherence of the synchrotron source to replace the lens of a traditional microscope with computational algorithms to form images. This imaging method allows one to surpass the resolution limits of modern x-ray optics. It also provides for an unencumbered space around the sample for complex in-situ environments. In addition, when the coherent scattering in the vicinity of a Bragg peak of a crystal is measured, a high sensitivity to distortions of the crystal lattice due to strain can be exploited. In this experiment we will measure the coherent scattering in the vicinity of a Bragg peak of a small (typically 300nm) gold crystal. We will then computationally invert the measured 3D diffraction pattern to a 3D image of the crystal.

“Measuring crystal microstructures with x-ray micro-beam Laue diffraction”
Ruqing Xu, Wenjun Liu, Jon Tischler

The x-ray micro-beam Laue diffraction at beamline 34-ID provides a unique diffraction probe of material microstructures with highly-focused, polychromatic x-ray beam and 3D spatial resolution. A pair of custom-profiled K-B mirrors provide sub-micron x-ray focal size, the scanning-wire differential aperture provides depth-resolution along x-ray’s penetration, and high-speed area detectors allows 3D mapping over relatively large sample volumes. The technique can reveal detailed local structural information of crystalline materials, such as crystallographic orientation, orientation gradients, grain morphology, strain tensor, and lattice structure, with high spatial resolution of less than 500 nm and angular resolution of 0.01°. It is applicable to single crystal, polycrystalline, composite, deformed, and functionally-graded materials. Applications include studies of fundamental deformation processes, basic grain-growth behavior, electromigration, solid-solution precipitation, structural phase transformation, and high-pressure mineral physics, etc.