

Neutron Vibrational Spectroscopy

Yongqiang (YQ) Cheng

Spectroscopy Section Neutron Scattering Division Oak Ridge National Laboratory

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

2023 National School on Neutron and X-ray Scattering

Outline

- Background
- Instrumentation
- Data analysis and modeling
- Applications
- Q&A

What is neutron vibrational spectroscopy (NVS)?

Neutron vibrational spectroscopy (NVS)	Inelastic neutron scattering (INS)
Chemists	Physicists
Molecular systems Organic/inorganic compounds	Condensed matter
Intramolecular modes Intermolecular modes	Phonons Magnons
S(ω) in cm ⁻¹	S(Q,E) in meV
Indirect geometry instrument	Direct geometry instrument
Q 2 2 4 2 4 2 7 8 9 10 11 2 3 16	

NVS focuses on applications of INS in chemistry

CAK RIDGE HIGH FLUX SPALLATION National Laboratory REACTOR SOURCE

Molecular vibration: the eternal dance of molecules

Note: the actual frequency is 4×10^{13} faster!

Each molecular vibration has its own "pace" and "motion".

Molecular vibration: the eternal dance of molecules

Note: the actual frequency is 4×10^{13} faster!

Each molecular vibration has its own "pace" and "motion".

Vibration of molecules in different environment

Isolated (gas, non-interacting)

On surface (chemi/physi-adsorbed)

Real production of the second of the second

In pores (restricted/confined)

Self-assembled (solid)

The vibrational behavior of a molecule is determined by: 1) What it is (internal structure, bond type, functional groups, etc.) 2) Where it is (local environment, intermolecular forces)

CAK RIDGE HIGH FLUX National Laboratory REACTOR SOURCE

What can we learn from molecular vibrations?

- Molecular and crystal structure
- Binding site and mechanism in a host-guest system
- Charge transfer and ion/dipole interactions
- Thermodynamic properties (free energy, stability, phase diagram, specific heat capacity and conductivity)
- Transport properties (diffusion and relaxation)

One of the most important vital signs of molecules

How to measure molecular vibration: Vibrational spectroscopy

<u>Crystallographers</u> use diffraction of some form of radiation (light, electron, x-ray, neutron,...) to obtain information on the periodic arrangement of atoms in space. The wavelength of the radiation is comparable to interatomic distances.

> Wavelength Scattering angle

<u>Spectroscopists</u> use (inelastic) scattering of radiation (light, x-ray, neutron,...) to excite vibrational modes. The energy of the radiation is comparable to the energy associated with the vibrational excitations.

> Incident energy Final energy (Scattering angle)

Interpretation of vibrational spectra: peak assignment

Table 1 Absorption frequencies of some common bonds (shown in bold type)

bond		type of compound	frequency
-с-н	(stretch)	alkanes	2800-3000
=C-H	(stretch)	alkenes, aromatics	3000-3100
=C-H	(stretch)	alkynes	3300
-O-H	(stretch)	alcohols, phenols	3600–3650 (free) 3200–3500 (H-bonded) (broad)
-0-H	(stretch)	carboxylic acids	2500-3300
–N – H	(stretch)	amines	3300-3500 (doublet for NH ₂)
-с-н	(stretch)	aldehydes	2720 and 2820
-C=C-	(stretch)	alkenes	1600-1680
-C=C-	(stretch)	aromatics	1500-1600
-C ≡ C - H	(stretch)	alkynes	2100-2270
-C-	(stretch)	aldehyde, ketones, carboxylic acids	1680–1740
-C≡N	(stretch)	nitriles	2220-2260
C-N	(stretch)	amines	1180-1360
-C-H	(bending)	alkanes	1375 (methyl)
-C-H	(bending)	alkanes	1460 (methyl and methylene)
-C-H	(bending)	alkanes	1370 and 1385 (isopropyl split)

Vibrational spectroscopy with neutrons: pros and cons

VISION (INS/NVS)	Raman/Infrared
Measures dynamics of nuclei (direct)	Measures response of electrons (indirect)
High penetration (bulk probe)	Low penetration (surface probe)
Great sensitivity to H	Cannot always see H
Can see Raman/Infrared-inactive modes	Selection rules apply
Easy access to low energy range (librational and translational modes)	Low energy cutoff applies (on the order of 100 cm ⁻¹)
Q trajectories in the (Q,ω) map; averaging over the Brillouin zone	Gamma point only
Easy to simulate/calculate	Difficult to simulate/calculate
No energy deposition in sample	Heating, photochemistry,

Main challenges: amount of sample, measurement time, energy/spatial resolution, temperature

Complementary tools to study molecular vibration

Complementary tools to study molecular vibration

S.F. Parker, Int.J. Vib. Spect., 2, 1, 6-22 (1998)

A simple $S(Q,\omega)$ map of molecular vibration: key features

Choice of instrument for NVS: direct geometry

Fixed incident energy, measure final energy and scattering angle.

Examples: ARCS, CNCS, HYSPEC, SEQUIOA, MARI

Choice of instrument for NVS: indirect geometry

Examples: VISION, TOSCA

Choice of instrument for NVS: comparison

Mitchell et al. Vibration Spectroscopy with Neutrons, World Scientific 2005

VISION@SNS

- White incident beam, fixed final energy (indirect geometry)
- High flux and double-focusing
- Broadband (-2 to 1000 meV at 30Hz, 5 to 500 meV at 60 Hz)
- Constant dE/E throughout the spectrum (~1.5%)
- Elastic line HMFW ~150 μeV

DAK RIDGE HIGH FLUX National Laboratory REACTOR

• Backward and 90° diffraction banks

VISION@SNS

VISION@SNS: a gallery

Sample environment at VISION

JANIS closed-cycle refrigerator (5-600K)

Pressure cells (piston, gas,

diamond anvil).

Gas handling panel for gas dosing, mixing, flow, adsorption (vacuum to 200 bar)

19 **CAK RIDGE** HIGH FLUX ISOTOPE REACTOR SOURCE

VISION diffraction banks

Can you match the molecules with the spectra?

Integrated modeling for data interpretation

- Dual 16 core Intel Haswell E5-2698v3 3.2 GHz Processors per node
- 50 compute nodes, 1600 (non-hyperthreaded) cores
- 128 GB memory/node, 6.4 TB Total memory
- Each node has 10Gb and Infiniband networking for connectivity.
- Installed as part of the ORNL Compute and Data Environment for Science (CADES)

VirtuES cluster

The digital twin at VISION

SPALLATION NEUTRON

OCLIMAX bridges theory and INS experiments

VISION, CNCS, HYSPEC, SEQUOIA, ARCS and many other neutron spectrometers.

OCLIMAX example: From single molecule to solid

OCLIMAX example: Multiphonon excitations

- Solving phonon density of states
 Understanding appropriate and
- Understanding anharmonicity and
 - potential energy landscape

CAK RIDGE National Laboratory

SPALLATION NEUTRON

Isotope substitution: acetonitrile

 Breaking down the total intensity into partial contributions from individual species or atoms

CAK RIDGE National Laboratory

SPALLATION NEUTRON

Coherent effects in powder spectra: aluminum

MARI data from: D. L. Roach et al. J. Appl. Cryst. **46**, 1755-1770 (2013). ARCS data from: Lin et al. Nucl. Instrum. Methods Phys. Res., Sect. A 2016, 810, 86–99.

29

Molecular dynamics trajectories to INS: ice Ih

30

 Lattice dynamics only feasible for small/crystalline systems

 MD much more efficient for large/complex systems such as amorphous or biological materials

 MD not limited by harmonic approximation Neural networks connecting structure and neutron scattering data

- Challenge: The modeling is not easy enough for users
 - Computing resources (hardware, software)
 - Expertise (learning curve)
- Can we bypass the modeling step altogether?

Neutron scattering spectra

Direct prediction from structure to spectra

- PubChem Organic Chemicals (~45,000 molecules, 90% training, 5% validation, 5% testing)
- Simulated INS spectra were generated using Gaussian and OCLIMAX (80~2000cm⁻¹, 97 data points)

Direct prediction from structure to spectra

Nano-catalyst Metal-organic framework Complex hydride The reactive species • Strong interactions • between methane involved in ammonia synthesis over Ru/C12A7 molecules and monoelectride catalysts is iron-hydroxyl sites in a surface adsorbed MOF are revealed, large-scale parallel hydrogen, not encaged which lead to hydrogen. weakened C-H bonds, facilitating methane to

- Kammert J. et al. JACS, 142, 7655-7667 (2020)
- Unexpected short H-H distance is revealed in a metal alloy hydride by neutron scattering and simulation. The anomaly has implications on high temperature superconductivity.
 - Borgschulte et al., PNAS 117, 4021 (2020)

Ionic conductor

- The local structure origin underlying the proton conductivity is determined in an electrolyte material for solid-oxide fuel cells, guiding the design of novel ionic conductors.
 - Cheng et al., J. Mater. Chem. A 5, 15507 (2017)

methanol conversion.

(2022)

- B. An et al., Nature Materials

CAK RIDGE National Laboratory

Applications

Metal hydrides: why putting hydrogen in metals?

- Hydrogen storage
 - $-Mg_2NiH_4$, LaNi₅H₅, NaAlH₄
 - Reversibility at desired T/P
- High Tc superconductors - LaH₁₀ (250K, 150GPa)¹
 - YH₁₀ (~300K, 250GPa, predicted²)
 - Weak covalent bonds between H
- The Switendick criterion
 - H-H distance > 2.1 Å under ambient pressure³
 - 1. A. P. Drozdov et al. Nature 569, 528–531 (2019).
 - 2. H. Liu et al. PNAS 114, 6990 (2017).

CAK RIDGE HIGH FLUX SPALLATION National Laboratory REACTOR

3. A. C. Switendick, Z. Phys. Chem. 117, 89–112 (1979).

http://www.hvdrogengas.biz/metal_hvdride_hvdrogen.html 140 120 100 Grams H₂ per liter 80 60 40 20 **Metal Hydrides** 5000 psi 10,000 psi Liquid Hydrogen (-Compressed Compressed 423°F) Gas Gas $T_{c} = 180 \text{K}$ $T_{c} = 249 K$ 151 GPa 152 GPa 0.10 LaD₁₀ LaH₁₀ 0.05 Ref. 1 100 150 250

Temperature (K)

https://cen.acs.org/materials/electronic-materials/Huntingnext-high-temperature-superconductor/96/i39

The mysterious peak at high H concentration

CAK RIDGE National Laboratory

36

Borgschulte et al., *PNAS* **117**, 4021 (2020)

Violation of Switendick criterion under ambient pressure

• Origin of the unexpected peak

Thermodynamic basis for the violation

• Massive ensemble DFT calculations with TITAN

CAK RIDGE HIGH FLUX National Laboratory REACTOR

38

Borgschulte et al., PNAS 117, 4021 (2020)

- Potential energy penalty for having at least one violation: ~1.5 kJ/[mol H]
- ⁵ Compensated by configurational entropy

3,200 individual DFT simulations 17% of Titan for nearly a week

Take-home messages:

- NVS focuses on applications of INS in chemistry.
- NVS and Raman/IR are complementary tools to provide a complete picture of molecular vibration.
- VISION is the instrument at SNS optimized for NVS.
- Modeling plays a critical role in NVS data interpretation.
- VISION has a digital twin powered by the VirtuES cluster and high throughput workflow/software.

Series on Neutron Techniques and Applications – Vol. 3

Vibrational Spectroscopy with Neutrons

With Applications in Chemistry, Biology, Materials Science and Catalysis

• AI/ML has potential to accelerate NVS experiment design and data analysis.

Acknowledgements:

- VISION team
- VISION users
- LDRD funding
- CADES and OLCF

References:

Stewart F. Parker, Anibal J. Ramirez-Cuesta, Luke Daemen, Vibrational spectroscopy with neutrons: Recent developments, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2018, 190, 518-523

Cheng, Y. Q.; Daemen, L. L.; Kolesnikov, A. I.; Ramirez-Cuesta, A. J. Simulation of Inelastic Neutron Scattering Spectra Using OCLIMAX. J. Chem. Theory Comput. 2019, 15 (3), 1974–1982

https://neutrons.ornl.gov/vision

Questions?

NXS Lecture - Vibrational Spectroscopy - Yongqiang Cheng

chengy@ornl.gov

