Polycrystalline Diffraction

Matt Miller
Sibley School of Mechanical and Aerospace Engineering Cornell High Energy Synchrotron Source (CHESS)
Cornell University

Cornell High Energy
Synchrotron Source
Cornell University
College of Engineering

Where's Cornell?

Where's Cornell?

Fingerlakes AVA Wine Region (American Viticultural Area)

Fingerlakes AVA Wine Region (American Viticultural Area)

Ithaca is Gorges

Ithaca Falls

Taughannock Falls

Cornell Campus - Ithaca

Cornell Camnus - Ithaca

CHESS

The Cornell High Energy Synchrotron Source

CHESS

The Cornell High Energy Synchrotron Source

- CHESS
- 1 of 2 high energy storage rings in the U.S.
- Funded by the U.S. National Science Foundation
- Accelerator research since 1934

CHESS

The Cornell High Energy Synchrotron Source

- CHESS
- 1 of 2 high energy storage rings in the U.S.
- Funded by the U.S. National Science Foundation
- Accelerator research since 1934
- CESR (Cornell Electron Storage Ring) - built in the 60s
- HE Physics (CLEO) up until 2008
- Now it is only there to make x-rays

CHESS

The Cornell High Energv Svnchrotron Source

- CHESS
- 1 of 2 high energy storage rings in the U.S.
- Funded by the U.S. National Science Foundation
- Accelerator research since 1934
- CESR (Cornell Electron Storage Ring) - built in the '60s
- HE Physicis (CLEO) up until 2008
- Now it is only there to make x-rays

CHESS

The Cornell High Energv Svnchrotron Source

- CHESS
- 1 of 2 high energy storage rings in the U.S.
- Funded by the U.S. National Science Foundation
- Accelerator research since 1934
- Accelerator research since 1934 - built in the '60s
- HE Physics (CLEO) up until 2008
- Now it is only there to make x-rays
- CHESS Environment
- NSF funding
- Complementary to DOE
- 20% new users
- Educational mission
- Cornell influence
- People - "can do" mindset

CHESS

The Cornell High Energv Svnchrotron Source

- CHESS
- 1 of 2 high energy storage rings in the U.S.
- Funded by the U.S. National Science Foundation
- Accelerator research since 1934
- CESR (Cornell Electron Storage Ring) - built in the '60s
- HE Physics (CLEO) up until 2008
- Now it is only there to make x-rays
- CHESS Environment
- NSF funding
- Complementary to DOE
- 20% new users
- Educational mission
- Cornell influence
- People - "can do" mindset
- CHESS-U\&2019 Renewal

G-lines, 2002

Synchrotron

Linac Converter

$$
\begin{aligned}
& \text { CHESS West (A, B, C) } \\
& \text { 1979, several }
\end{aligned}
$$

CHESS

The Cornell High Energy Svnchrotron Source

- CHESS
- 1 of 2 high energy storage rings in the U.S.
- Funded by the U.S. National Science Foundation
- Accelerator research since 1934
- CESR (Cornell Electron Storage Ring) - built in the '60s
- HE Physics (CLEO) up until 2008
- Now it is only there to make x-rays
- CHESS Environment
- NSF funding
- Complementary to DOE
- 20% new users
- Educational mission
- Cornell influence
- People - "can do" mindset
- CHESS - U\& 2019 Renewal
- Reconfigure for 1 direction running

Synchrotron
e^{+}
Transfer Line

G-lines, 2002

Storage Ring
\qquad
ce

CHESS

The Cornell High Energv Svnchrotron Source

- CHESS
- 1 of 2 high energy storage rings in the U.S.
- Funded by the U.S. National Science Foundation
- Accelerator research since 1934
- CESR (Cornell Electron Storage Ring) - built in the '60s
- HE Physics (CLEO) up until 2008
- Now it is only there to make x-rays
- CHESS Environment
- NSF funding
- Complementary to DOE
- 20% new users
- Educational mission
- Cornell influence
- People - "can do" mindset
- CHESS - V\& 2019 Renewal
- Reconfigure for 1 direction running
- New beamlines

G-lines, 2002

CHESS

The Cornell High Energv Svnchrotron Source

- CHESS
- 1 of 2 high energy storage rings in the U.S.
- Funded by the U.S. National Science Foundation
- Accelerator research since 1934
- CESR (Cornell Electron Storage Ring) - built in the '60s
- HE Physics (CLEO) up until 2008
- Now it is only there to make x-rays
- CHESS Environment
- NSF funding
- Complementary to DOE
- 20% new users
- Educational mission
- Cornell influence
- People - "can do" mindset
- CHESS - U\& 2019 Renewal
- Reconfigure for 1 direction running
- New beamlines

G-lines, 2002

- New funding model....

CHESS

The Cornell High Energv Svnchrotron Source

CESR

- Reconfigure for 1 direction running
- New beamlines
- New funding model....

The World's High Energy Synchrotrons

APS - Chicago

http://www.anl.gov

SPring-8 - Japan

http://www.riken.jp

ESRF - Grenoble

http://www.esrf.eu

Petra-III - Hamburg

http://http://photon-science.desy.de

CHESS

Outline

- Our Motivation
- Quick diffraction primer
- Examples
- A New CHESS
- Directions
- Tips

Our Motivation for Exploring High Energy X-ray Diffraction

Our Motivation for Exploring High Energy X-ray Diffraction

- Material Structure and Behavior

Our Motivation for Exploring High Energy X-ray Diffraction

- Material Structure and Behavior
- "State" of material

Our Motivation for Exploring High Energy X-ray Diffraction

- Material Structure and Behavior
- "State" of material
- Processes: plasticity, fatigue, fracture.

Our Motivation for Exploring High Energy X-ray Diffraction

- Material Structure and Behavior
- "State" of material
- Processes: plasticity, fatigue, fracture.
- Mechanical Design

Our Motivation for Exploring High Energy X-ray Diffraction

- Material Structure and Behavior
- "State" of material
- Processes: plasticity, fatigue, fracture.
- Mechanical Design

Our Motivation for Exploring High Energy X-ray Diffraction

- Material Structure and Behavior
- "State" of material
- Processes: plasticity, fatigue, fracture.
- Mechanical Design
- Traditional Mechanical Testing

Our Motivation for Exploring High Energy X-ray Diffraction

- Material Structure and Behavior
- "State" of material
- Processes: plasticity, fatigue, fracture.
- Mechanical Design
- Traditional Mechanical Testing
- Extract Properties

Our Motivation for Exploring High Energy X-ray Diffraction

- Material Structure and Behavior
- "State" of material
- Processes: plasticity, fatigue, fracture.
- Mechanical Design
- Traditional Mechanical Testing
- Extract Properties
- Validate and Calibrate Material Models

Our Motivation for Exploring High Energy X-ray Diffraction

- Material Structure and Behavior
- "State" of material
- Processes: plasticity, fatigue, fracture.
- Mechanical Design
- Traditional Mechanical Testing
- Extract Properties
- Validate and Calibrate Material Models
- Mechanical response = truth

Our Motivation for Exploring High Energy X-ray Diffraction

- Material Structure and Behavior
- "State" of material
- Processes: plasticity, fatigue, fracture.
- Mechanical Design
- Traditional Mechanical Testing
- Extract Properties
- Validate and Calibrate Material Models
- Mechanical response = truth
- Microstructural Characterization

Our Motivation for Exploring High Energy X-ray Diffraction

- Material Structure and Behavior
- "State" of material
- Processes: plasticity, fatigue, fracture.
- Mechanical Design
- Traditional Mechanical Testing
- Extract Properties
- Validate and Calibrate Material Models
- Mechanical response = truth
- Microstructural Characterization
- Microstructure dictates properties

Our Motivation for Exploring High Energy X-ray Diffraction

- Material Structure and Behavior
- "State" of material
- Processes: plasticity, fatigue, fracture.
- Mechanical Design
- Traditional Mechanical Testing
- Extract Properties
- Validate and Calibrate Material Models
- Mechanical response = truth
- Microstructural Characterization
- Microstructure dictates properties
- Ever more highly resolved "images" (3D)

Our Motivation for Exploring High Energy X-ray Diffraction

- Material Structure and Behavior
- "State" of material
- Processes: plasticity, fatigue, fracture.
- Mechanical Design
- Traditional Mechanical Testing
- Extract Properties
- Validate and Calibrate Material Models
- Mechanical response = truth
- Microstructural Characterization
- Microstructure dictates properties
- Ever more highly resolved "images" (3D)
- Correlate Microstructure with Properties

Our Motivation for Exploring High Energy X-ray Diffraction

- Material Structure and Behavior
- "State" of material
- Processes: plasticity, fatigue, fracture.
- Mechanical Design
- Traditional Mechanical Testing
- Extract Properties
- Validate and Calibrate Material Models

- Mechanical response = truth
- Microstructural Characterization
- Microstructure dictates properties
- Ever more highly resolved "images" (3D)
- Correlate Microstructure with Properties

Ti-6-4

Our Motivation for Exploring High Energy X-ray Diffraction

- Material Structure and Behavior
- "State" of material
- Processes: plasticity, fatigue, fracture.
- Mechanical Design
- Traditional Mechanical Testing
- Extract Properties
- Validate and Calibrate Material Models
- Mechanical response = truth
- Microstructural Characterization
- Microstructure dictates properties
- Ever more highly resolved "images" (3D)
- Correlate Microstructure with Properties
- Empirical understanding of microstructureproperty relationships

Ti-6-4

Our Motivation for Exploring High Energy X-ray Diffraction

- Material Structure and Behavior
- "State" of material
- Processes: plasticity, fatigue, fracture.
- Mechanical Design
- Traditional Mechanical Testing
- Extract Properties
- Validate and Calibrate Material Models

- Mechanical response = truth
- Microstructural Characterization
- Microstructure dictates properties
- Ever more highly resolved "images" (3D)
- Correlate Microstructure with Properties
- Empirical understanding of microstructureproperty relationships
- Component design (performance)

Ti-6-4

Our Motivation for Exploring High Energy X-ray Diffraction

- Material Structure and Behavior
- "State" of material
- Processes: plasticity, fatigue, fracture.
- Mechanical Design
- Traditional Mechanical Testing
- Extract Properties
- Validate and Calibrate Material Models
- Mechanical response = truth
- Microstructural Characterization
- Microstructure dictates properties
- Ever more highly resolved "images" (3D)
- Correlate Microstructure with Properties
- Empirical understanding of microstructureproperty relationships
- Component design (performance)
- Material design (processing)

Ti-6-4

Hope: Microstructure-Based Modeling

Owen Richmond (US Steel, Alcoa), 1985

```
STRUCTURAL SCALES
```

SCALE
continuum
Polyphase $\left(10^{-2}\right)$

Polycrystal (10^{-4})

Crystal (10-6)
Slip System $\left(10^{-8}\right)$
Dislocation $\left(10^{-10}\right)$

Structural Objects

$$
\begin{aligned}
& \text { Phases } \\
& \text { Crystals } \\
& \text { Slip Sytems } \\
& \text { Dislocation } \\
& \text { Networks } \\
& \text { Atoms }
\end{aligned}
$$

Hope: Microstructure-Based Modeling

Owen Richmond (US Steel, Alcoa), 1985

```
STRUCTURAL SCALES
```


Polycrystal (10-4) Crystals

Structural Objects
Polycrystal" Models

Hope: Microstructure-Based Modeling

Hope: Microstructure-Based Modeling

- Multiscale modeling research is "rampant" - very little crystal scale mechanical testing data, however
-Overarching idea: use High Energy X-ray Diffraction (HEXD) data and in situ loading with FEM representation of microstructure to understand crystal scale material behavior - Processing and Performance - induced CHANGES in unit cell to understand material response
- Merge model with diffraction data:
M.P. Miller and PR. Dawson, Current Opinion in Solid State \& Materials Science, 18, 286-299, 2014.

Instructional Videos From CHESS

- Google: Chess x-ray micromechanics
- https://www.youtube.com/watch?v=kYEboNz423A\&t=9s

MAE 7110 Course Notes

1 Some Elements of Solid Mechanics 3
1.1 Direct Notation 3
1.2 Indicial Notation 3
1.3 Coordinate Transformations 5
1.4 Stress and Strain 6
2 Crystallography, Orientations and Symmetry 7
2.1 Basic Crystallography 7
2.2 Orientations 13
2.3 Symmetry 19
3 Elements of Bragg Diffraction 25
3.1 X-rays and Waves 25
3.2 Bragg's Law 28
3.3 X-Ray Absorption 29
4 The Laue Equations and The Rotating Crystal Experiment 31
4.1 Scattering from an Electron 31
4.2 The Scattering Vector 33
4.3 Scattering from an Atom 34
4.4 Scattering from a Crystal (Diffraction) 35
4.5 Ewald's Sphere 38
4.6 Rotating Crystal Diffraction Experiments 40

MAF 7110 Cnirse Nntes

- You need to understand diffraction (or scattering) well enough to do your science - the deeper your understanding, the more versatile the tool will be for you.

MaF 7110 Conirse Notes

- You need to understand diffraction (or scattering) well enough to do your science - the deeper your understanding, the more versatile the tool will be for you.
- Diffraction data looks like bad TV - data reduction is challenging. There are several packages out there but NONE of it is point and click - you are going to have to write some code.

M $\mathbf{M F} 711$ Course Notes

- You need to understand diffraction (or scattering) well enough to do your science - the deeper your understanding, the more versatile the tool will be for you.
- Diffraction data looks like bad TV - data reduction is challenging. There are several packages out there but NONE of it is point and click - you are going to have to write some code. - Connecting x-ray data to underlying material behavior is challenge and the opportunity.

M $\mathbf{M F} 711$ Course Notes

- You need to understand diffraction (or scattering) well enough to do your science - the deeper your understanding, the more versatile the tool will be for you.
- Diffraction data looks like bad TV - data reduction is challenging. There are several packages out there but NONE of it is point and click - you are going to have to write some code. - Connecting x-ray data to underlying material behavior is challenge and the opportunity.
- Obtaining in situ (real time) information over an entire polycrystalline aggregate is the main advantage of doing diffraction at a light source

M $\mathbf{M F} 711 \mathrm{C}$ Cnurse Notec

- You need to understand diffraction (or scattering) well enough to do your science - the deeper your understanding, the more versatile the tool will be for you.
- Diffraction data looks like bad TV - data reduction is challenging. There are several packages out there but NONE of it is point and click - you are going to have to write some code.
- Connecting x-ray data to underlying material behavior is challenge and the opportunity.
- Obtaining in situ (real time) information over an entire polycrystalline aggregate is the main advantage of doing diffraction at a light source
- Be careful, it is easy to get "hooked" on diffraction and light sources and late nights and multiple days at the beam line and the tool becomes your science... it's actually pretty great!

High Energy Diffraction Basics

High Energy Diffraction Basics

X-ray diffraction-100+ years old!

High Energy Diffraction Basics

X-ray diffraction- 100+ years old!

- "Workhorse" scattering experiment

High Energy Diffraction Basics

X-ray diffraction- 100+ years old!

- "Workhorse" scattering experiment

Synchrotron source

High Energy Diffraction Basics

X-ray diffraction- 100+ years old!

- "Workhorse" scattering experiment

Synchrotron source

- High Fidelity, tunable X-ray beams

High Energy Diffraction Basics

X-ray diffraction- 100+ years old!

- "Workhorse" scattering experiment

Synchrotron source

- High Fidelity, tunable X-ray beams

Monochromatic x-rays

High Energy Diffraction Basics

X-ray diffraction- 100+ years old!

- "Workhorse" scattering experiment

Synchrotron source

- High Fidelity, tunable X-ray beams

Monochromatic x-rays

- High Energy; E > 50 keV

High Energy Diffraction Basics

X-ray diffraction- 100+ years old!

- "Workhorse" scattering experiment

Synchrotron source

- High Fidelity, tunable X-ray beams

Monochromatic x-rays

- High Energy; E > 50 keV
- Lower absorption - bulk samples

High Energy Diffraction Basics

X-ray diffraction- 100+ years old!

- "Workhorse" scattering experiment

Synchrotron source

- High Fidelity, tunable X-ray beams

Monochromatic x-rays

- High Energy; E > 50 keV
- Lower absorption - bulk samples

High Energy Diffraction Basics

X-ray diffraction- 100+ years old!

- "Workhorse" scattering experiment

Synchrotron source

- High Fidelity, tunable X-ray beams

Monochromatic x-rays

- High Energy; E > $\mathbf{5 0} \mathbf{~ k e V}$
- Lower absorption - bulk samples
- Rotate the sample

High Energy Diffraction Basics

X-ray diffraction- 100+ years old!

- "Workhorse" scattering experiment

Synchrotron source

- High Fidelity, tunable X-ray beams

Monochromatic x-rays

- High Energy; E > $\mathbf{5 0} \mathbf{~ k e V}$
- Lower absorption - bulk samples
- Rotate the sample

High Energy Diffraction Basics

X-ray diffraction- 100+ years old!

- "Workhorse" scattering experiment

Synchrotron source

- High Fidelity, tunable X-ray beams

Monochromatic x-rays

- High Energy; E > $\mathbf{5 0} \mathbf{~ k e V}$
- Lower absorption - bulk samples
- Rotate the sample
- Intensity at $(2 \theta, \eta, \omega)$

High Energy Diffraction Basics

X-ray diffraction- 100+ years old!

- "Workhorse" scattering experiment

Synchrotron source

- High Fidelity, tunable X-ray beams

Monochromatic x-rays

- High Energy; E > $\mathbf{5 0} \mathbf{~ k e V}$
- Lower absorption - bulk samples
- Rotate the sample
- Intensity at ($2 \theta, \eta, \omega$)
- Fast, area detectors

1. Diffracting Crystal
2. Area Detector
3. Debye-Scherrer Ring

High Energy Diffraction Basics

X-ray diffraction- 100+ years old!

- "Workhorse" scattering experiment

Synchrotron source

- High Fidelity, tunable X-ray beams

Monochromatic x-rays

- High Energy; E > $\mathbf{5 0} \mathbf{~ k e V}$
- Lower absorption - bulk samples
- Rotate the sample
- Intensity at $(2 \theta, \eta, \omega)$
- Fast, area detectors

E

High Energy Diffraction Basics

X-ray diffraction- 100+ years old!

- "Workhorse" scattering experiment

Synchrotron source

- High Fidelity, tunable X-ray beams

Monochromatic x-rays

- High Energy; E > 50 keV
- Lower absorption - bulk samples
- Rotate the sample
- Intensity at $(2 \theta, \eta, \omega)$
- Fast, area detectors

High Energy Diffraction Basics

X-ray diffraction- 100+ years old!

- "Workhorse" scattering experiment

Synchrotron source

- High Fidelity, tunable X-ray beams

Monochromatic x-rays

- High Energy; E > 50 keV
- Lower absorption - bulk samples
- Rotate the sample
- Intensity at ($2 \theta, \eta, \omega$)
- Fast, area detectors

Polychromatic (White) x-rays

High Energy Diffraction Basics

X-ray diffraction- 100+ years old!

- "Workhorse" scattering experiment

Synchrotron source

- High Fidelity, tunable X-ray beams

Monochromatic x-rays

- High Energy; E > $\mathbf{5 0} \mathbf{~ k e V}$
- Lower absorption - bulk samples
- Rotate the sample
- Intensity at ($2 \theta, \eta, \omega$)
- Fast, area detectors

Polychromatic (White) x-rays

- 40keV < E < 200 ++ keV (Blue)

High Energy Diffraction Basics

X-ray diffraction- 100+ years old!

- "Workhorse" scattering experiment

Synchrotron source

- High Fidelity, tunable X-ray beams

Monochromatic x-rays

- High Energy; E > $\mathbf{5 0} \mathbf{~ k e V}$
- Lower absorption - bulk samples
- Rotate the sample
- Intensity at ($2 \theta, \eta, \omega$)
- Fast, area detectors

Polychromatic (White) x-rays

- 40keV < E < 200 ++ keV (Blue)
- Energy Dispersive Diffraction (EDD)

High Energy Diffraction Basics

X-ray diffraction- 100+ years old!

- "Workhorse" scattering experiment

Synchrotron source

- High Fidelity, tunable X-ray beams

Monochromatic x-rays

- High Energy; E > 50 keV
- Lower absorption - bulk samples
- Rotate the sample
- Intensity at ($2 \theta, \eta, \omega$)
- Fast, area detectors

Polychromatic (White) x-rays

- 40keV < E < 200 ++ keV (Blue)
- Energy Dispersive Diffraction (EDD)
- Peak information now in terms of E

High Energy Diffraction Basics

X-ray diffraction- 100+ years old!

- "Workhorse" scattering experiment

Synchrotron source

- High Fidelity, tunable X-ray beams

Monochromatic x-rays

- High Energy; E > 50 keV
- Lower absorption - bulk samples
- Rotate the sample
- Intensity at ($2 \theta, \eta, \omega$)
- Fast, area detectors

Polychromatic (White) x-rays

- 40keV < E < 200 ++ keV (Blue)
- Energy Dispersive Diffraction (EDD)
- Peak information now in terms of E
- Translate sample and/or detector

High Energy Diffraction Basics

X-ray diffraction- 100+ years old!

- "Workhorse" scattering experiment

Synchrotron source

- High Fidelity, tunable X-ray beams

Monochromatic x-rays

- High Energy; E > 50 keV
- Lower absorption - bulk samples
- Rotate the sample
- Intensity at ($2 \theta, \eta, \omega$)
- Fast, area detectors

Polychromatic (White) x-rays

- 40keV < E < 200 ++ keV (Blue)
- Energy Dispersive Diffraction (EDD)
- Peak information now in terms of E
- Translate sample and/or detector
- Collect a field of data

High Energy Diffraction Basics

- iransiate sampie ana/or aetecior
- Collect a field of data

High Energy Diffraction Basics

- iransiate sampie ana/or aetecior
- Collect a field of data
- Slits enable stepping through T

High Energy Diffraction Basics

F
https://en.wikipedia.org/wiki/ File:EDXRD_Schematic.png\#/media/

File:EDXRD_Schematic.png

- iransiate sampie ana/or aetector
- Collect a field of data
- Slits enable stepping through T
- SERIOUS fast alternative to neutron diffraction

Beam size / grain size: Powder or Single Crystal

Beam size / grain size: Powder or Single Crystal

Beam size / grain size: Powder or Single Crystal

Beam size / grain size: Powder or Single Crystal

Beam size / grain size: Powder or Single Crystal

- MultiGrain Experiments (Spots)
- Collect diffracted intensity in each grain
- 100s to 2000 grains
- Detector distance
- Near field - orientation map of polycrystal
- Fare field - strains and evolution with insitu loading

Beam size / grain size: Powder or Single Crystal

- MultiGrain Experiments (Spots)
- Collect diffracted intensity in each grain
- 100s to 2000 grains
- Detector distance
- Near field - orientation map of polycrystal
- Fare field - strains and evolution with insitu loading

Beam size / grain size: Powder or Single Crystal

- MultiGrain Experiments (Spots)
- Collect diffracted intensity in each grain
- 100s to 2000 grains
- Detector distance
- Near field - orientation map of polycrystal
- Fare field - strains and evolution with insitu loading

Beam size / grain size: Powder or Single Crystal

Beam size / grain size: Powder or Single Crystal

Beam size / grain size: Powder or Single Crystal

Beam size / grain size: Powder or Single Crystal

High Energy X-ray diffraction (HEXD) Detector Distances

1 m

Near Field

 Grain Maps Lattice Strain (Tensor) and Orientations of each crystalVery Far Field
High Resolution Strain and Orientation

Real Space Resolution

Reciprocal Space
Resolution

Better Reciprocal Space Resolution

Lattice Strains - Link to Stress

Lattice Strains - Link to Stress

- Start with the idea of stress analysis using resistance strain gages

$$
\begin{aligned}
\epsilon_{A}\left(\theta_{A}\right) & =\cos ^{2}\left(\theta_{A}\right) \epsilon_{11}+\sin ^{2}\left(\theta_{A}\right) \epsilon_{22}+2 \sin \left(\theta_{A}\right) \cos \left(\theta_{A}\right) \epsilon_{12} \\
\epsilon_{B}\left(\theta_{B}\right) & =\cos ^{2}\left(\theta_{B}\right) \epsilon_{11}+\sin ^{2}\left(\theta_{B}\right) \epsilon_{22}+2 \sin \left(\theta_{B}\right) \cos \left(\theta_{B}\right) \epsilon_{12} \\
\epsilon_{C}\left(\theta_{C}\right) & =\cos ^{2}\left(\theta_{C}\right) \epsilon_{11}+\sin ^{2}\left(\theta_{C}\right) \epsilon_{22}+2 \sin \left(\theta_{C}\right) \cos \left(\theta_{C}\right) \epsilon_{12}
\end{aligned}
$$

Lattice Strains - Link to Stress

- Start with the idea of stress analysis using resistance strain gages
- Plane Stress - 3 Strains

$$
\begin{aligned}
\epsilon_{A}\left(\theta_{A}\right) & =\cos ^{2}\left(\theta_{A}\right) \epsilon_{11}+\sin ^{2}\left(\theta_{A}\right) \epsilon_{22}+2 \sin \left(\theta_{A}\right) \cos \left(\theta_{A}\right) \epsilon_{12} \\
\epsilon_{B}\left(\theta_{B}\right) & =\cos ^{2}\left(\theta_{B}\right) \epsilon_{11}+\sin ^{2}\left(\theta_{B}\right) \epsilon_{22}+2 \sin \left(\theta_{B}\right) \cos \left(\theta_{B}\right) \epsilon_{12} \\
\epsilon_{C}\left(\theta_{C}\right) & =\cos ^{2}\left(\theta_{C}\right) \epsilon_{11}+\sin ^{2}\left(\theta_{C}\right) \epsilon_{22}+2 \sin \left(\theta_{C}\right) \cos \left(\theta_{C}\right) \epsilon_{12}
\end{aligned}
$$

Lattice Strains - Link to Stress

- Start with the idea of stress analysis using resistance strain gages
- Plane Stress - 3 Strains
- Rosette Equations for the strain tensor

$$
\begin{aligned}
\epsilon_{A}\left(\theta_{A}\right) & =\cos ^{2}\left(\theta_{A}\right) \epsilon_{11}+\sin ^{2}\left(\theta_{A}\right) \epsilon_{22}+2 \sin \left(\theta_{A}\right) \cos \left(\theta_{A}\right) \epsilon_{12} \\
\epsilon_{B}\left(\theta_{B}\right) & =\cos ^{2}\left(\theta_{B}\right) \epsilon_{11}+\sin ^{2}\left(\theta_{B}\right) \epsilon_{22}+2 \sin \left(\theta_{B}\right) \cos \left(\theta_{B}\right) \epsilon_{12} \\
\epsilon_{C}\left(\theta_{C}\right) & =\cos ^{2}\left(\theta_{C}\right) \epsilon_{11}+\sin ^{2}\left(\theta_{C}\right) \epsilon_{22}+2 \sin \left(\theta_{C}\right) \cos \left(\theta_{C}\right) \epsilon_{12}
\end{aligned}
$$

Lattice Strains - Link to Stress

- Start with the idea of stress analysis using resistance strain gages
- Plane Stress - 3 Strains
- Rosette Equations for the strain tensor
- Crystal lattice strains and rotates under applied load

Lattice Strains - Link to Stress

- Start with the idea of stress analysis using resistance strain gages
- Plane Stress - 3 Strains
- Rosette Equations for the strain tensor
- Crystal lattice strains and rotates under applied load
- Change in 2θ produces a peak shift = normal strain

SGT-1/350-TY11

$$
\begin{aligned}
\epsilon_{A}\left(\theta_{A}\right) & =\cos ^{2}\left(\theta_{A}\right) \epsilon_{11}+\sin ^{2}\left(\theta_{A}\right) \epsilon_{22}+2 \sin \left(\theta_{A}\right) \cos \left(\theta_{A}\right) \epsilon_{12} \\
\epsilon_{B}\left(\theta_{B}\right) & =\cos ^{2}\left(\theta_{B}\right) \epsilon_{11}+\sin ^{2}\left(\theta_{B}\right) \epsilon_{22}+2 \sin \left(\theta_{B}\right) \cos \left(\theta_{B}\right) \epsilon_{12} \\
\epsilon_{C}\left(\theta_{C}\right) & =\cos ^{2}\left(\theta_{C}\right) \epsilon_{11}+\sin ^{2}\left(\theta_{C}\right) \epsilon_{22}+2 \sin \left(\theta_{C}\right) \cos \left(\theta_{C}\right) \epsilon_{12}
\end{aligned}
$$

Lattice Strains - Link to Stress

- Start with the idea of stress analysis using resistance strain gages
- Plane Stress - 3 Strains
- Rosette Equations for the strain tensor
- Crystal lattice strains and rotates under applied load
- Change in 2θ produces a peak shift = normal strain

Lattice Strains - Link to Stress

- Start with the idea of stress analysis using resistance strain gages
- Plane Stress - 3 Strains
- Rosette Equations for the strain tensor
- Crystal lattice strains and rotates under applied load
- Change in 2θ produces a peak shift = normal strain
- Scattering vector is strain "direction"

SGT-1/350-TY11

Lattice Strains - Link to Stress

- Start with the idea of stress analysis using resistance strain gages
- Plane Stress - 3 Strains
- Rosette Equations for the strain tensor
- Crystal lattice strains and rotates under applied load
- Change in 2θ produces a peak shift = normal strain
- Scattering vector is strain "direction"
- Collect enough strains to build lattice (elastic) strain tensor using rosette equations

SGT-1/350-TY11

Lattice Strains - Link to Stress

- Start with the idea of stress analysis using resistance strain gages
- Plane Stress - 3 Strains
- Rosette Equations for the strain tensor
- Crystal lattice strains and rotates under applied load
- Change in 2θ produces a peak shift = normal strain
- Scattering vector is strain "direction"
- Collect enough strains to build lattice (elastic) strain tensor using rosette equations

$$
\begin{aligned}
& \epsilon_{A}\left(\theta_{A}\right)=c c \\
& \epsilon_{B}\left(\theta_{B}\right)=c c \mathrm{CeO}_{2}\{311\} \\
& \epsilon_{C}\left(\theta_{C}\right)=c c
\end{aligned}
$$

- Mechanics: equilibrium and 6 strains

High Energy X-ray Diffraction at CHESS \& APS sector 1

High Energy X-ray Diffraction at CHESS \& APS sector 1

CHESS A2-2003

High Energy X-ray Diffraction at CHESS \& APS sector 1

CHESS A2-2003

High Energy X-ray Diffraction at CHESS \& APS sector 1

CHESS A2-2003

A2-2010

High Energy X-ray Diffraction at CHESS \& APS sector 1

CHESS A2-2003

A2-2010

A2-2013

High Energy X-ray Diffraction at CHESS \& APS sector 1

Cornell University
Cornell High Energy Synchrotron Source

High Energy X-ray Diffraction at CHESS \& APS sector 1

High Energy X-ray Diffraction at CHESS \& APS sector 1

Tensile Response of One Crystal - Far Field

Tensile Response of One Crystal - Far Field

Sample stress state is uniaxial
Crystal stress state is NOT uniaxial Model captures this behavior in most crystals for uniaxial loading

Wong et. al, 2013, Comp. Mat. Sci., 77, 456-466.

Cyclic Deformation of High Purity Copper

- Fatigue Crack initiation in copper
- Heterogeneous plastic slip
- Cyclic tests:
- OFHC (99.9\% pure copper)
- CHESS F2 \& APS 1-ID
- Su Leen Wong \& Robert Carson simulations (P. Dawson)

Macroscale Stress-Strain

Forward projection: interface with the model

Forward projection: interface with the model

Forward projection: interface with the model

Forward projection: interface with the model

Forward Projection / Virtual Diffractometer

- Put diffraction model into FEM
- Accurately represent x-ray paths and detector
- Distortion and orientation of virtual crystals within virtual diffraction data
- Compare virtual and real detectors directly
- Hypothesis investigation
- See impact directly

Diffracted Intensity Distribution - Far Field Detector

before macroscopic yield

- Polycrystal Sample - rotate in ω
- 100-1000 grains
- 20-100 peaks per grain
- Each peak contains a projection of strain and orientation distributions within a grain
- Post-yield "smearing" associated with plasticity - crystallographic slip
- To first approximation
- Orientation spread: η (azimuthal) \&w
- Strain spread: 2θ (radial) - traditional line broadening
- Moments of intensity distribution
- Mean value (centroid)
- Full Width Half Max (spread)

after macroscopic yield

Diffracted Intensity Distribution - Far Field Detector

- Polycrystal Sample - rotate in ω
- 100-1000 grains
- 20-100 peaks per grain
- Each peak contains a projection of strain and orientation distributions within a grain
- Post-yield "smearing" associated with plasticity - crystallographic slip
- To first approximation
- Orientation spread: η (azimuthal) \&w
- Strain spread: 2θ (radial) - traditional line broadening
- Moments of intensity distribution
- Mean value (centroid)
- Full Width Half Max (spread)
before macroscopic yield

Finite Element Model - Virtual

 intensity projected onto detector (1)

Finite Element Model - Virtual

Orientation and Strain Spread

- From each peak (spot) extract simple center of mass (COM) and spread (FWHM) information
- Radial - lattice strain
- Azimuthal - orientation
- Using all spots for 1 crystal (20-100), compute Θ and ζ

$$
\begin{gathered}
\left(\Delta \eta_{i}^{F W H M}\right)_{n}=\left(\eta_{i}^{F W H M}\right)_{n}-\left(\eta_{0}^{F W H M}\right)_{n} \\
\zeta=\frac{1}{N} \sum_{n=1}^{N}\left(\Delta \eta_{i}^{F W H M}\right)_{n}
\end{gathered}
$$

Orientation
$\left(\Delta 2 \theta_{i}^{F W H M}\right)_{n}=\left(2 \theta_{i}^{F W H M}\right)_{n}-\left(2 \theta_{0}^{F W H M}\right)_{n}$
$\Theta=\frac{1}{N} \sum_{n=1}^{N}\left(\Delta 2 \theta_{i}^{F W H M}\right)_{n}$
Lattice Strain

Evolution of ζ

ζ Distribution over the aggregate

Experiment

Model

$\boldsymbol{\Phi}$ Distribution (strains)

InSit μ @CHESS

- Push the envelope of High Energy X-ray Diffraction (HEXD) methods
- Create new methods, steal others
- Provide "enhanced support" of HEXD experiments
- Meet designers, scientists, non-x-ray experts "half way"
- Model and analysis support
- Form partnerships: industry, national labs, university faculty
- Spectrum of Methods and Applications
- Residual Stress
- Thick sections
- Stress + chemistry

CAT - First Beamtime Fall 2014

- AM parts
- In situ Fatigue Crack Growth
- Other In situ conditions

InSit μ People

- Armand Beaudoin: InSit μ Associate Director, UIUC emeritus Prof., distinguished industrial career, experiment/model interface
- Darren Pagan: Staff scientist, novel HEXD methods / data analysis / upgrade
- Chris Budrow: CHESS GRA working on residual stress
- Ramya Nair: Post-Doc: working on fracture in cement
- Kelly Nygren: Post-Doc: blending EM and HEXD
- Eric Miller: Tufts ECE Prof., signal processing, data science

Fatigue crack growth - Aluminum

35k cycles

FCG in Ti-6-4 (Pilchak)

FCG in Ti-6-4 (Pilchak)

FCG in Ti-6-4 (Pilchak)

Welding Residual Stress Measurement Results

Justin Mach, Senior Engineer, Caterpillar
Armand Beaudoin, Industrial Llaison, InSitu@CHESS
Matt Miller, Director, InSit $@$ CHESS
Darren Dale, CHESS F2 Beamline Scientist / Associate Director, InSit μ @CHESS
Peter Ko, CHESS Research Associate
Graduate Research Assistants (Cornell University): Darren Pagan, Mark Obstalecki, \& Chris Budrow
Graduate Research Assistant (University of Illinois at Urbana-Champaign): Kamalika Chatterjee

Lap Joint Sample

CAT Simulation result

Residual stress resulting from welding process simulation.

CAT Lap joint sample experimental plan

- Welding model validation
- Simple sample "representative" of a real weld
- 1/4" steel plate
- Monochromatic reflection geometry
- Traditional $\sin ^{2} \Psi$ analysis
- Replicate lab source experiment
- Vary energy
- CHESS F2

- Polychromatic Energy Dispersive Diffraction (EDD) m
- Penetrate through the plate
- Interrogate surface layer
- Plane stress - rosette analysis
- Advanced Photon Source (APS)

Mach, et. al.,JOM, 69:5, 393-399, 2017.

Summarv of CAT Results

Mach, et. al.,JOM, 69:5, 393-399, 2017.

Additive Manufacturing: Residual Stress and Distortion

Distortion Example (Blown Powder)

Optomec LENS MR-7

Residual Stress Induced Cracking

Powder Bed: EOS
 x W x H)
Substrate: Ti-6Al-4V, 4 in. $x 1$ in. $x 0.5$ in. ($\mathrm{L} \times \mathrm{W} \times \mathrm{H}$)
Courtesy Fred Lia and Wesley Mitchell
CIMP 3D, Penn State Univ.
\& Jim Williams - Ohio State Univ.

Residual Stresses in AM Materials

- Monochromatic powder
- Measure gradient
- Map strain over thin flange
- Scans on grid of $0.5 \times 0.5 \mathrm{~mm}$
- 3600 Measurements!
- Thin section of sample
- Plane Stress
- Sample rotated 180 degrees about y-axis
- Stress result is average of "front" and "back" data.
- White beam measurements
- Not shown here

Residual Stresses in AM Materials

- Monochromatic powder
- Measure gradient
- Map strain over thin flange
- Scans on grid of $0.5 \times 0.5 \mathrm{~mm}$
- 3600 Measurements!
- Thin section of sample
- Plane Stress
- Sample rotated 180 degrees about y-axis
- Stress result is average of "front" and "back" data.
- White beam measurements
- Not shown here

Residual Stresses in AM Materials

- Monochromatic powder
- Measure gradient
- Map strain over thin flange
- Scans on grid of $0.5 \times 0.5 \mathrm{~mm}$
- 3600 Measurements!
- Thin section of sample
- Plane Stress
- Sample rotated 180 degrees about y-axis
- Stress result is average of "front" and "back" data.
- White beam measurements
- Not shown here

Additive Manufacturing: Results

- [11 10$]$ reflection used to compute strain, with diffraction ring broken up into 10 degree arcs (for peak fitting).
- Isotropic Elasticity applied to calculate stress: $\mathrm{E}=114 \mathrm{GPa}, \mathrm{v}=0.342$
- Boundary conditions were used to adjust lattice parameter, adjusting so that normal stresses at corners are zero.

Detectors - new speeds and ranges

Brazing - 2 milliseconds

MM-PAD Detector: Sol Gruner, Cornell

- 150 micron pixels
- $38 \mathrm{~mm} \times 57 \mathrm{~mm}$
- (Left) $10^{7} \mathrm{x}$-rays / second; dynamic range 1-106 photons
- (Right) Seeing $\mathrm{Al}_{3} \mathrm{Ni}$ Debye rings with 5 photon range
- CdTe for high energy

MM-PAD

Detector

Tate et. al, Journal of
Physics: Conference
Series, 425(6): 062004, 2013.
Giewekemeyer et. al, J. Synch. Rad 21(5): 1167-1174, Sep 2014.

CHESS-U Stations MSN-C Beamlines

CHESS-U Stations MSN-C Beamlines

CHESS-U Stations MSN-C Beamlines

Conclusions / Advice

Conclusions / Advice

- Enormous opportunities for "watching" the processing and performance of crystalline materials using high energy x-ray diffraction

Conclusions / Advice

- Enormous opportunities for "watching" the processing and performance of crystalline materials using high energy x-ray diffraction
- "Real" real time when coupled with high speed area detectors

Conclusions / Advice

- Enormous opportunities for "watching" the processing and performance of crystalline materials using high energy x-ray diffraction
- "Real" real time when coupled with high speed area detectors
- If you have a process that you are interested in that happens at timescales down to sub-nanosecond ${ }^{* * *}$, you can probably watch it with x-rays.

Conclusions / Advice

- Enormous opportunities for "watching" the processing and performance of crystalline materials using high energy x-ray diffraction
- "Real" real time when coupled with high speed area detectors
- If you have a process that you are interested in that happens at timescales down to sub-nanosecond ${ }^{* * *}$, you can probably watch it with x-rays.
- Nondestructive

Conclusions / Advice

- Enormous opportunities for "watching" the processing and performance of crystalline materials using high energy x-ray diffraction
- "Real" real time when coupled with high speed area detectors
- If you have a process that you are interested in that happens at timescales down to sub-nanosecond ${ }^{* * *}$, you can probably watch it with x-rays.
- Nondestructive
- High energy x-rays are the ONLY way to make many of the measurements l've talked about today.

Conclusions / Advice

- Enormous opportunities for "watching" the processing and performance of crystalline materials using high energy x-ray diffraction
- "Real" real time when coupled with high speed area detectors
- If you have a process that you are interested in that happens at timescales down to sub-nanosecond ${ }^{* * *}$, you can probably watch it with x-rays.
- Nondestructive
- High energy x-rays are the ONLY way to make many of the measurements l've talked about today.
- Are you going to be a user or a USER ?

Conclusions / Advice

- Enormous opportunities for "watching" the processing and performance of crystalline materials using high energy x-ray diffraction
- "Real" real time when coupled with high speed area detectors
- If you have a process that you are interested in that happens at timescales down to sub-nanosecond ${ }^{* * *}$, you can probably watch it with x-rays.
- Nondestructive
- High energy x-rays are the ONLY way to make many of the measurements l've talked about today.
- Are you going to be a user or a USER ?
- Incredible opportunities open up when you understand the true utility of HE x-rays, but this is not a point and click world

Conclusions / Advice

- Enormous opportunities for "watching" the processing and performance of crystalline materials using high energy x-ray diffraction
- "Real" real time when coupled with high speed area detectors
- If you have a process that you are interested in that happens at timescales down to sub-nanosecond ${ }^{* * *}$, you can probably watch it with x-rays.
- Nondestructive
- High energy x-rays are the ONLY way to make many of the measurements l've talked about today.
- Are you going to be a user or a USER ?
- Incredible opportunities open up when you understand the true utility of HE x-rays, but this is not a point and click world
- Write your own virtual diffractometer - figure out diffraction, decide what YOU want to do with it - don't settle for what a beamline scientist will send home with you.

Conclusions / Advice

- Enormous opportunities for "watching" the processing and performance of crystalline materials using high energy x-ray diffraction
- "Real" real time when coupled with high speed area detectors
- If you have a process that you are interested in that happens at timescales down to sub-nanosecond ${ }^{* * *}$, you can probably watch it with x-rays.
- Nondestructive
- High energy x-rays are the ONLY way to make many of the measurements l've talked about today.
- Are you going to be a user or a USER ?
- Incredible opportunities open up when you understand the true utility of HE x-rays, but this is not a point and click world
- Write your own virtual diffractometer - figure out diffraction, decide what YOU want to do with it - don't settle for what a beamline scientist will send home with you.
- Some of you will use existing methods as a starting point. MAYBE making a new measurement is a function of how much SKIN your are willing to leave behind..... - Hammer people, Nail People and combo

Conclusions / Advice

- Enormous opportunities for "watching" the processing and performance of crystalline materials using high energy x-ray diffraction
- "Real" real time when coupled with high speed area detectors
- If you have a process that you are interested in that happens at timescales down to sub-nanosecond ${ }^{* * *}$, you can probably watch it with x-rays.
- Nondestructive
- High energy x-rays are the ONLY way to make many of the measurements l've talked about today.
- Are you going to be a user or a USER ?
- Incredible opportunities open up when you understand the true utility of HE x-rays, but this is not a point and click world
- Write your own virtual diffractometer - figure out diffraction, decide what YOU want to do with it - don't settle for what a beamline scientist will send home with you.
- Some of you will use existing methods as a starting point. MAYBE making a new measurement is a function of how much SKIN your are willing to leave behind..... - Hammer people, Nail People and combo
- Measure anything but not measure everything

