Inelastic X-Ray Scattering \& Lattice Dynamics

Esen Ercan Alp
Advanced Photon Source, Argonne National Laboratory

alp@anl.gov

NX School 2019
June 24, 2019, Argonne National Laboratory, Argonne, IL

Lattice dynamics for beginners

Inelastic X-Ray Scattering \& Spectroscopy @ APS

- Nuclear Resonant Inelastic X-Ray scattering, NRIXS: Sectors 3, 16, 30
- Momentum Resolved High Energy Resolution IXS (HERIX) Sectors 3, 30
- Resonant Inelastic X-Ray Scattering, RIXS : Sector 27
- X-Ray Raman Scattering, XRS : Sectors 13, 16, 20
- X-Ray Emission Spectroscopy, XES: Sectors 6, 13, 16, 17

$$
\begin{array}{ll}
E_{i}=E_{f} & \text { : Elastic scattering } \\
E_{i} \neq E_{f} & \text { : Inelastic scattering }
\end{array}
$$

The cause and magnitude of inelastic scattering determines which method to use.

The change in energy could be as little as nano-eV or as high as keV.
X-rays are quite different than other probes because:
i) large and small energy transfers are possible
ii) large momentum transfers at low energy is possible
iii) avoid multiple scattering by being a gentle probe
iv) polarization sensitivity
v) large energy tunability
vi) small beam size

Courtesy: Y. Sakurai, Spring-8

Incident beam energy
\uparrow Phonons
(Bi -)
Magnons
$50 \mathrm{meV} \quad 500 \mathrm{meV}$

Charge Transfer

$1.5 \mathrm{eV} \quad 2 \mathrm{eV}$
Energy

Lattice dynamics for beginners

Lattice dynamics describes vibrations of atoms in condensed matter:

- crystalline solids
- glasses, and
- liquids

However, some of the convenience gained by symmetry or periodic lattice is lost for glasses and liquids. Also, effect of surfaces and defects are glowing short-comings of the classical model.

Lattice dynamics is a reflection of forces acting upon atoms and leads to

- sound velocity: $\mathbf{V}_{\mathbf{s}}, \mathbf{V}_{\mathbf{p}}$
- vibrational entropy, $\mathbf{S}_{\mathbf{v}}$
- specific heat, \mathbf{C}_{p}
- force constant, <F>
- compression tensor, $\mathbf{c}_{11}, \mathbf{C}_{12}, \mathbf{C}_{44}$
- Young's modulus, \mathbf{E}
- Shear modulus, G
- stiffness and resilience
- Gruneisen constant, $\boldsymbol{\gamma}$

$$
\begin{aligned}
& \text { Imagine that you can measure } \\
& \text { all that for a micron sized sample, } \\
& \text { at } 3 \mathrm{Mbar} \text { at } 4000 \mathrm{~K} \text {, in a way that } \\
& \text { is element selective, or even better } \\
& \text { isotope selective. }
\end{aligned}
$$

Sectors 3, 16, 30

- viscosity, \mathbf{v}

Many experimental techniques exist to study lattice dynamics

- sound velocity, deformation, thermal expansion, heat capacity.
- spectroscopic methods using light, x-rays and neutrons, and electrons
- point contact spectroscopy

Two main approximations should be noticed:

- Born-Oppenheimer (adiabiatic) approximation
- Motion of atoms are independent and decoupled from the electrons.
- All electrons follow the nuclei. This can be justified by considering the time scales involved: $10^{-15} \mathrm{~s}$ (femto) for electrons, $10^{-12} \mathrm{~s}$ (pico) for nuclei
- Harmonic approximation
- At equilibrium, attractive and repulsive forces are balanced.
- When atoms move away from the equilibrium positions, they are forced to come back by restoring forces.
- Magnitude of atomic displacements are small compared to interatomic distance.
- All atoms in equivalent positions in every unit cell move together.

There should be no thermal expansion in the harmonic model.

The fact that there is thermal expansion is an indication that the potential under which the atoms move is not harmonic.

However, harmonic model has so many convenient features that we adopt it to explain many features of atomic vibrations.

r_{0} Interatomic distance

$$
\begin{gathered}
E(r)=E_{0}+\left.\frac{1}{2} \frac{\partial^{2} E}{\partial r^{2}}\right|_{r_{0}}\left(r-r_{0}\right)^{2}+\left.\frac{1}{3!} \frac{\partial^{3} E}{\partial r^{3}}\right|_{r_{0}}\left(r-r_{0}\right)^{3}+\left.\frac{1}{4!} \frac{\partial^{4} E}{\partial r^{4}}\right|_{r_{0}}\left(r-r_{0}\right)^{4}+\cdots \\
\text { ignoring these terms is the barmonic approximation }
\end{gathered}
$$

Diatomic infinite 1-D chain

$$
E=\frac{1}{2} J \sum_{n}\left(u_{1, n}-u_{2, n}\right)^{2}+\frac{1}{2} J \sum_{n}\left(u_{2, n}-u_{1, n+1}\right)^{2}
$$

$$
J=\frac{\partial^{2} E}{\partial u_{1, n} \partial u_{2, n}} \quad \text { Force constant (spring constant) }
$$

$$
\begin{aligned}
& u_{1, n}(t)=\tilde{u}_{1} \exp (i(k n a-\omega t)) \\
& u_{2, n}(t)=\tilde{u}_{2} \exp (i(k n a-\omega t))
\end{aligned}
$$

Time dependent displacement of two atoms in terms of relative displacement of each atom

$$
\begin{aligned}
& E_{1, n}=\frac{1}{2} J\left(u_{1, n}-u_{2, n}\right)^{2}+\frac{1}{2} J\left(u_{1, n}-u_{2, n-1}\right)^{2} \\
& E_{2, n}=\frac{1}{2} J\left(u_{2, n}-u_{1, n}\right)^{2}+\frac{1}{2} J\left(u_{2, n}-u_{1, n+1}\right)^{2}
\end{aligned}
$$

Energy

Force as derivative of energy

$$
\begin{aligned}
& \ddot{u}_{1, n}(t)=-\omega^{2} \tilde{u}_{1} \exp i(k n a-\omega t)=-\omega^{2} u_{1, n}(t) \\
& \ddot{u}_{2, n}(t)=-\omega^{2} \tilde{u}_{2} \exp i(k n a-\omega t)=-\omega^{2} u_{2, n}(t)
\end{aligned}
$$

Acceleration

$$
\begin{aligned}
& m_{1} \ddot{u}_{1, n}(t)=-m_{1} \omega^{2} u_{1, n}(t)=-J\left(2 u_{1, n}(t)-u_{2, n}(t)-u_{2, n-1}(t)\right) \\
& m_{2} \ddot{u}_{2, n}(t)=-m_{2} \omega^{2} u_{2, n}(t)=-J\left(2 u_{2, n}(t)-u_{1, n}(t)-u_{1, n+1}(t)\right)
\end{aligned}
$$

$$
e_{1}=m_{1}^{1 / 2} \tilde{u}_{1} ; \quad e_{2}=m_{2}^{1 / 2} \tilde{u}_{2}
$$

Mass normalized displacements (real)

$$
\omega^{2}\binom{e_{1}}{e_{2}}=\mathbf{D}(k) \cdot\binom{e_{1}}{e_{2}}
$$

Matrix form of Newton's eqn of motion

$$
\mathbf{D}(k)=\left(\begin{array}{cc}
2 J / m_{1} \\
-J(1+\exp (+i k a)) / \sqrt{m_{1} m_{2}} & -J(1+\exp (-i k a)) / \sqrt{m_{1} m_{2}} \\
2 J / m_{2}
\end{array}\right)
$$

Eigen solutions

Inelastic X-Ray Scattering: A plethora of different techniques

IXS

Diamond

A

Umberto Monteverde, et al, 2015

Graphene

HERIX-3 and HERIX-30

Choice of energy

Si Reflection at 90°	Energy (keV)	Resolution (meV)	Reflectivity $(\%)$
1860	21.657	1.23	78
111111	21.747	0.83	70
13119	21.985	0.81	69
15117	22.685	0.70	68
2040	23.280	0.87	76
121212	23.724	0.80	75
14148	24.374	0.69	74
2220	25.215	0.576	71
131313	25.701	0.37	60

Bent-diced IXS analyzers

Generations of high-resolution monochromators

T. Toellner, D. Shu

What is being measured?

$$
\frac{d^{2} \sigma}{d \Omega \mathrm{~d} \omega}=\underbrace{r_{0}^{2} \frac{\omega_{f}}{\omega_{i}}\left|\mathbf{e}_{i} \cdot \mathbf{e}_{f}\right| N \sum_{\text {Dynamical structure factor } \mathbf{s}(\mathbf{Q}, \mathbf{w})}^{\sum}}_{\text {Thomson cross section }}
$$

$$
S(\mathbf{Q}, \omega)=\frac{1}{2 \pi} \int d t e^{-i \omega t}\langle\underbrace{\left.\phi_{i}\left|\sum_{l l^{\prime}} f_{l}(\mathbf{Q}) e^{-i \mathbf{Q} \cdot \mathbf{r}_{l}(t)} f_{l^{\prime}}(\mathbf{Q}) e^{i \mathbf{Q} \cdot \mathbf{r}_{i^{\prime}}(0)}\right| \phi_{i}\right\rangle}_{\text {Density-density correlations }}
$$

$$
f(Q)=f_{\text {ion }}(Q)+f_{\text {valence }}(Q) \quad \text { Atomic form factor }
$$

External probe-photon

Entropy fluctuations,
$\Delta \omega_{R} \sim \alpha q^{2}$
Pressure fluctuations

Concentration fluctuations $\Delta \omega_{R} \sim D q^{2}$

$$
\omega_{B}(q)=V \cdot q
$$

$$
\Delta \omega_{B} \sim V q^{2}
$$

Supercooled Si
$\mathrm{T}=1300 \mathrm{C}^{\circ}$

PHONON's: $\phi \omega v \eta$ (phonē), sound

- Phonons are periodic oscillations in condensed systems.
- They are inherently involved in thermal and electrical conductivity.
- They can show anomalous (non-linear) behavior near a phase transition.
- They can carry sound (acoustic modes) or couple to electromagnetic radiation or neutrons (acoustical and optical).
- Have energy of $\hbar \omega$ as quanta of excitation of the lattice vibration mode of angular frequency ω. Since momentum, $\hbar k$, is exact, they are delocalized, collective excitations.
- Phonons are bosons, and they are not conserved. They can be created or annihilated during interactions with neutrons or photons.
- They can be detected by Brillouin scattering (acoustic), Raman scattering, FTIR (optical).
- Their dispersion throughout the BZ can ONLY be monitored with x-rays (IXS), or neutrons (INS).
- Accurate prediction of phonon dispersion require correct knowledge about the force constants: COMPUTATIONAL TECHNIQUES ARE ESSENTIAL.

$$
\omega^{2} \mathbf{e}=\mathbf{D}(\mathbf{k}) \cdot \mathbf{e} \quad \Rightarrow \quad \omega^{2}=\mathbf{e}^{\mathrm{T}} \cdot \mathbf{D}(\mathbf{k}) \cdot \mathbf{e}
$$

Eigenvalue eqn.

$$
D_{j, j^{\prime}}(\mathbf{k})=\frac{1}{\sqrt{m_{j} m_{j^{\prime}}}} \sum_{n^{\prime}} \Phi_{0, n^{\prime}}^{j, j^{\prime}} \exp \left(i \mathbf{k} \cdot\left(\mathbf{r}_{j, 0}-\mathbf{r}_{j^{\prime}, n^{\prime}}\right)\right) \quad \text { Dynamical matrix }
$$

$$
\mathbf{e}_{\lambda}^{\mathrm{T}} \cdot \mathbf{e}_{\lambda}=1 ; \quad \mathbf{e}_{\lambda^{\prime}}^{\mathrm{T}} \cdot \mathbf{e}_{\lambda}=\delta_{\lambda^{\prime}, \lambda} \quad \text { Eigenvalues are orthonormal.. }
$$

symmetrical
stretching
asymmetrical stretching
scissoring

rocking

wagging

twisting

PHONONS (cont'd)

$$
E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega
$$

Energy of a single oscillation as a function of number of phonons. The second term $+1 / 2$ is the "zero-point" energy.

$$
E=\sum_{\mathbf{k}, \lambda} \omega_{\mathbf{k}, \lambda}^{2}|Q(\mathbf{k}, \lambda)|^{2}=\sum_{\mathbf{k}, \lambda}\left(n_{\mathbf{k}, \lambda}+\frac{1}{2}\right) \hbar \omega_{\mathbf{k}, \lambda} .
$$

$$
\left\langle n\left(\omega_{\mathbf{k}, \lambda}\right)\right\rangle=\frac{1}{\exp \left(\hbar \omega_{\mathbf{k}, \lambda} / k_{\mathrm{B}} T\right)-1} \quad \begin{aligned}
& \text { Bose-Einstein statistics for average number } \\
& \text { of modes at a given temperature }
\end{aligned}
$$

$\mathcal{H}=\frac{1}{2} \sum_{j, \ell} m_{j}\left|\dot{\mathbf{u}}_{j \ell}\right|^{2}+\frac{1}{2} \sum_{\substack{j, j^{\prime} \\ \ell, \ell^{\prime}}} \mathbf{u}_{j \ell}^{T} \cdot \Phi_{\ell, \ell^{\prime}}^{j, j^{\prime}} \cdot \mathbf{u}_{j^{\prime} \ell^{\prime}}$
Hamiltonian of the system:

$$
H=\text { Kin. En. + Pot. En }
$$

Phonon density of states

Many thermodynamic functions like free energy, specific heat, and entropy are additive functions of phonon density of states.

This stems from the notion that the normal modes do not interact in the harmonic approximation.

Phonon density of states is the number of modes in a unit energy interval.

$$
c_{v}(T)=3 N k \int \frac{\hbar^{2} \omega^{2} e^{\hbar \omega / k T}}{(k T)^{2}\left(1-e^{\hbar \omega / k T}\right)^{2}} \cdot g(\omega) \cdot d \omega
$$

Phonon density of states is a key ingredient for many thermodynamic properties

If we choose to write in terms of energy, $\quad E=\hbar \omega, \quad \beta=1 / k_{B} T$

$$
c_{v}(T)=3 k_{B} \int(\beta E / 2)^{2} \csc h(\beta E) \cdot g(E) \cdot d E \quad \text { Vibrational specific heat }
$$

$$
S_{v}(T)=3 k_{B} \int_{0}^{\infty}\{\beta E / 2 \cdot \cot h(\beta E)-\ln [2 \sin h(\beta E)]\} \cdot g(E) \cdot d E \text { Vibrational entropy }
$$

$$
f_{L M}=e^{-E_{R} \int\{g(E) / 2\} \cdot \operatorname{coth}(\beta E / 2)} d E
$$

Lamb-Mössbauer factor
$g(E)=\frac{3 m}{2 \pi^{2} \hbar^{3} \rho v_{D}^{3}} E^{2}$

$$
\langle F\rangle=\frac{M}{\hbar^{2}} \int_{0}^{\infty} E^{2} g(E) d E
$$

And, some thermodynamics

$$
\mathcal{Z}=\frac{1}{1-\exp (-\beta \hbar \omega)}
$$

Partition function

$$
F=-k_{\mathrm{B}} T \ln \mathcal{Z}
$$

Free energy

$$
C=-T \frac{\partial^{2} F}{\partial T^{2}} \quad \text { Heat capacity }
$$

Why x-rays instead of neutrons or visible light?

Limited momentum transfer capability of neutrons at low energies favor x-rays to study collective excitations with large dispersion, like sound modes.

When the sound velocity exceeds that of neutrons in the liquid, x-rays become unique. The low-momentum/high-energy transfer region is only accessible by x-rays.

Inelastic X-Ray Scattering: two approaches

Nuclear Resonant Scattering

Kernresonanzabsorption von $\boldsymbol{\gamma}$-Strahlung in Ir^{101}

Von Rudolf L. Mössbauer

Aus dem Laboratorium für technische Physik der Technischen Hochschule in München und dem Institut für Physik im Max-Planck-Institut für medizinische Forschung in Heidelberg
(Z. Naturforschg. 14 a, 211-216 [1959]; eingegangen am 5. November 1958)

Bei der Emission und Selbstabsorption von weicher γ-Strahlung in Kernen treten bei tiefen Temperaturen in Festkörpern sehr starke Linien mit der natürlichen Linienbreite auf. Diese Linien erscheinen als Folge davon, daß bei tiefen Temperaturen bei einem Teil der Quantenübergänge der γ-Rückstoßimpuls nicht mehr vom einzelnen Kern aufgenommen wird, sondern von dem Kristall als Ganzes. Da die scharfen Emissions- und Absorptionslinien energetisch an der gleichen Stelle liegen, tritt ein sehr starker Resonanzfluoreszenzeffekt auf. Durch eine „Zentrifugen"-Methode, bei der die Emissions- und Absorptionslinien gegeneinander verschoben werden, läßt sich der Fluoreszenzeffekt unterdrücken und so eine unmittelbare Bestimmung der natürlichen Linienbreite von Resonanzlinien vornehmen. Erste Messungen nach dieser Methode ergeben für die Lebenszeit τ des 129 keV -Niveaus in $\operatorname{Ir}^{101}: \tau=\left(1,4 \begin{array}{c}+0,2 \\ +0,1\end{array}\right) \cdot 10^{-10} \mathrm{sec}$.

absorption-emission \& recoil

intuitive expectation: large resonance absorption at high temperature
Mossbauer's observation: less absorption at high temperature

Fe^{2+}, cubic

Fe^{2+}, octahedral
Fe^{2+}, tetrahedral
Fe^{3+}, octahedral
Fe^{3+}, tetrahedral

How isomer shift \& quadrupole splitting are used for valence identification

in Mössbauer Spectroscopy?

After 50 years of research and more than 10,000 papers, approximately 800 iron compounds have been classified, and the results are disseminated by the Mössbauer Effect Data Center (MEDC).

Given the fact that measured Mössbauer linewidths are typically $0.3 \mathrm{~mm} / \mathrm{sec}$, it is common to determine IS and QS with an accuracy of $0.1 \mathrm{~mm} / \mathrm{sec}$.

Hence, in many circumstances, this combination of IS-QS values provide valuable guidance into valence issues in minerals, lunar rocks, and meteorite studies.

Standard Time structure @ APS

Nuclear Resonance and Fallout in ${ }^{57}$ Fe-decay

Detection of nuclear decay

Level Diagram

Energy domain

Time domain (SMS or NFS)

α (bcc-Fe) to ε (fcc-Fe) transition under pressure by synchrotron Mössbauer spectroscopy

Early dreamers..

Visualized by W. Vischer at Los Alamos \& K. S.
Singwi at Argonne (1960), but only properly
observed after synchrotron radiation based
tunable monochromators are realized.
(W. Sturhahn et al, PRL , 74 (1995) p. 3832)

Phonon annihilation

$5 \mathrm{neV}+$ mono. resolution

Zero phonon "Mössbauer pip"

Visualized by Stan Ruby (1974) at Argonne and properly observed by E. Gerdau (Hamburg).
(S. L Ruby. J. de Physique 35 (1974) C6-209

Phonon creation

Energy (~ meV)

Phonon Density of States Measured by Inelastic Nuclear Resonant Scattering

W. Sturhahn, T.S. Toellner, and E.E. Alp
Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439

X. Zhang and M. Ando

Photon Factory, National Laboratory for High Energy Physics, Oho 1-1, Tsukuba, Ibaraki 305, Japan
Y. Yoda and S. Kikuta

Department of Applied Physics, Faculty of Engineering, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113, Japan
M. Seto

Research Reactor Institute, Kyoto University, Sennan-gun, Osaka 590-04, Japan
C. W. Kimball and B. Dabrowski

Department of Physics, Northern Illinois University, De Kalb, Illinois 60115
(Received 16 December 1994)

Phonon excitation probability

Multi-phonon decomposition

Lipkin's sum rules related to phonon excitation probability

H. Lipkin, Phys. Rev. B, 52 (1995) 10073

Temperature dependence of phonon excitation probability

61
Chumakov, et al, Phys. Rev. B 54 (1996) 9596.

Measurement of v_{D}, Debye sound velocity allows to resolve longitudinal and shear sound velocity, provided that bulk modulus and density, is independently and simultaneously measured by x ray diffraction.

$\mathrm{K}(\mathrm{GPa})$	$\rho(\mathrm{g} / \mathrm{cc})$	$V_{D}(\mathrm{~m} / \mathrm{s})$	$V_{P}(\mathrm{~m} / \mathrm{s})$	$V_{S}(\mathrm{~m} / \mathrm{s})$	$\mathrm{G}(\mathrm{GPa})$
$\mathbf{1 6 5} \pm 1$	$\mathbf{8 . 0 1}$	$\mathbf{3 5 1 0} \pm 12$	$\mathbf{5 8 1 3} \pm 13$	$\mathbf{3 1 4 6} \pm 11$	$\mathbf{7 9 . 3} \pm \mathbf{0 . 6}$

$$
\begin{gathered}
\frac{K_{S}}{\rho}=V_{P}^{2}-\frac{4}{3} V_{S}^{2} \\
\frac{G}{\rho}=V_{S}^{2} \\
\frac{3}{V_{D}^{3}}=\frac{1}{V_{P}^{3}}+\frac{2}{V_{S}^{3}}
\end{gathered}
$$

K_{S} : adiabatic bulk modulus
G : shear modulus
V_{P} : compression wave velocity
V_{s} : shear wave velocity
V_{D} : Debye sound velocity
P : density

Thermodynamic properties as an additive function of phonon density of states

Helmholz free energy

Kinetic energy

Isotope fractionation

Information from NRIXS spectra:

> directly from the data, $\mathrm{S}(\mathrm{E})$
\Rightarrow temperature

$$
T=-\frac{E}{k_{B}} \ln \left[\frac{S(-E)}{S(E)}\right]
$$

\Rightarrow mean square displacement

$$
\left\langle u^{2}\right\rangle=-\frac{1}{k^{2}} \ln \left[1-\int\{S(E)-S(0)\} d E\right]
$$

\Rightarrow kinetic energy

$$
E_{\text {kin }}=\frac{1}{4 E_{R}} \int\left(E-E_{R}\right)^{2} S(E) d E
$$

\Rightarrow average force constant

$$
D=\frac{k^{2}}{2 E_{R}^{2}} \int\left(E-E_{R}\right)^{3} S(E) d E
$$

$k \sim$ wave number of nuclear transition
$E_{R} \sim$ recoil energy
$\rho \sim$ mass density
> quasi-harmonic lattice model
\Rightarrow partial phonon density of states

$$
\mathcal{D}(E)
$$

\Rightarrow Debye sound velocity

$$
\mathrm{v}_{D}=\left(\frac{M}{2 \rho \pi^{2} \hbar^{3}} \frac{E^{2}}{\mathcal{D}(E \rightarrow 0)}\right)^{1 / 3}
$$

\Rightarrow Grüneisen parameter

$$
\gamma_{D}=\frac{1}{3}+\frac{\rho}{\mathbf{v}_{D}}\left(\frac{\partial \mathbf{v}_{D}}{\partial \rho}\right)_{T}
$$

\Rightarrow isotope fractionation

$$
\ln \beta=-\frac{\Delta m}{M} \frac{1}{8\left(k_{B} T\right)^{2}} \int E^{2} \mathcal{D}(E) d E
$$

M ~ mass of resonant isotope
$\Delta \mathrm{m} \sim$ isotope mass difference
$\mathrm{k}_{\mathrm{B}} \sim$ Boltzmann's constant
$\mathrm{T} \sim$ temperature

Phonon density of states

$$
g(k) \mathrm{d} k=\frac{V}{(2 \pi)^{3}} 4 \pi k^{2} \mathrm{~d} k .
$$

Number of wave vectors in a spherical shell of radius k per unit volume of reciprocal space.

$$
g(\omega)=\frac{3 V}{2 \pi^{2} c^{2}} \omega^{2}
$$

Phonon density of states has a quadratic dependence on frequency, and inversely proportional to the cube of sound velocity.

Debye model

Fe-TPP-NO

DyFe_{3}

Let's assume that the acoustic modes have a linear relationship between frequency and wave vector:
$\omega=c k$, where \boldsymbol{c} is average sound velocity
Maximum frequency cut off is at Debye energy: e.g. for Cu , this frequency is $240 \mathrm{~cm}^{-1}$ ($\sim 30 \mathrm{meV}$). Considering $1 \mathrm{meV}=11.605 \mathrm{~K}=8.065 \mathrm{~cm}^{-1}$, this corresponds to 348 K , which is close to 344 K . For Fe, the measured cut-off value is $\sim 39.5 \mathrm{meV}$, which corresponds to 458 K , very close to reported 460 K.

Phonon density of states of iron under high pressure

H.K. Mao, et al, Science, 292 (2001) 914

Fe films deposited on W(110)

Transition from the bulk to a single iron monolayer

S. Stankov, R. Röhlsberger, T. Slezak, M. Sladecek, B. Sepiol, G. Vogl, A. I. Chumakov, R. Rüffer, N. Spiridis, J. Lazewski, K. Parlinski, and J. Korecki,

ESRF Highlights 2006

1. Thermoelectric materials: always something new !..

Skutterudites

$\mathrm{EuFe}_{4} \mathrm{Sb}_{12}$

The loosely bound guests affect the characteristics of the vibrations, and change the thermal conductivity

Many elements in modern thermolelectric materials include Fe, rare-earth atoms like Eu, Sm, Dy, as well as Sb , and Te. These are all proper Mössbauer resonances we can exploit, and we do..

Vibrational dynamics of the host framework in Sn clathrates
Bogdan M. Leu,,${ }^{1, *}$ Mihai Sturza, ${ }^{2}$ Michael Y. Hu, ${ }^{1}$ David Gosztola, ${ }^{3}$ Volodymyr Baran, ${ }^{4}$ Thomas F. Fässler, ${ }^{4}$ and E. Ercan Alp ${ }^{1}$

FIG. 1. (Color online) Structure of type-I clathrate $\mathrm{K}_{8} \mathrm{Zn}_{4} \mathrm{Sn}_{42}$. Color scheme: gray $=\mathrm{K}$, yellow $=\mathrm{Zn} / \mathrm{Sn}$, red $=\mathrm{Sn}$. One small (pentagonal dodecahedron) and large (tetrakaidecahedron) host framework cage are highlighted in green and blue, respectively.
type-I clathrate: pentagonal dodecahedra and tetrakaidecahedra alternating in a 1:3 ratio

FIG. 2. (Color online) Structure of type-VIII clathrate $\mathrm{Ba}_{8} \mathrm{Ga}_{16} \mathrm{Sn}_{30}$. Color scheme: gray $=\mathrm{Ba}$, red $=\mathrm{Sn} / \mathrm{Ga}$. One host framework cage (pentagonal dodecahedron) is highlighted in blue.
> type VIII : pentagonal dodecahedra; however, BGS adopts the type-I clathrate structure at high-temperature

Raman shift (cm^{-1})

Raman shift (cm^{-1})

mean square displacement via phonon dos
$\left\langle z^{2}\right\rangle_{v}=\frac{1}{3 k^{2}} \int[2 \bar{n}(\bar{\nu})+1] \frac{\bar{v}_{R}}{\bar{v}} D(\bar{v}) d \bar{\nu}$,
$3.8 \times 10^{-5} \AA^{2} / K$ for KZS and $3.5 \times 10^{-5} \AA^{2} / K$ for BGS.

FIG. 3 (color online). (a) Theoretical phonon dispersion relation of bcc-Sn at 64 GPa . The inset shows the Brillouin zone of the bcc-Sn lattice. (b) Comparison between the theoretically calculated phonon DOS (lines) and the experimentally derived phonon DOS at 64 GPa (circles).

Biology \& bio-inorganic chemistry

S. Cramer	University of California-Davis
E. Solomon	Stanford University
T. Sage	Northeastern University
E. Munck	University of Pittsburg
DeBeer George	Cornell University
Nicolai Lehnert	University of Michigan
R. Scheidt	University of Notre Dame

Vibrational spectroscopy of proteins, enzymes and biomimic model porphyrins and cubanes

Energy (meV)

$\left[\mathrm{NEt}_{4}\right]_{2}\left[\mathrm{Fe}_{2} \mathrm{~S}_{2} \mathrm{Cl}_{4}\right]$.

Some unique advantages of NRIXS

1. Low frequency motions: ~ total mass
2. No selection rule except motion of atoms along x-ray propagation
3. Peak intensity \sim mode participation ~ actual displacement
4. No matrix effects or limitations
5. Element and isotope selective
6. No unpredictable cancellations in scattering terms

$$
\phi_{\alpha}=\frac{1}{3} \frac{\bar{v}_{R}}{\bar{v}_{\alpha}} e_{j \alpha}^{2}\left(\bar{n}_{\alpha}+1\right) f
$$

Matt Smith, et al, Inorganic Chemistry, 2005, 44,5562

Porphyrins:

Tetraphenylporphyrin (TPP) Octaethylporphyrin (OEP)

A
Phenyl
H

B

H
Ethyl

FeTPP(1Melm)NO

Energy (meV)

$\left[\mathrm{NEt}_{4}\right]_{2}\left[\mathrm{Fe}_{2} \mathrm{~S}_{2} \mathrm{Cl}_{4}\right]$.

Some unique advantages of NRIXS

1. Low frequency motions: ~ total mass
2. No selection rule except motion of atoms along x-ray propagation
3. Peak intensity \sim mode participation ~ actual displacement
4. No matrix effects or limitations
5. Element and isotope selective
6. No unpredictable cancellations in scattering terms

$$
\phi_{\alpha}=\frac{1}{3} \frac{\bar{v}_{R}}{\bar{v}_{\alpha}} e_{j \alpha}^{2}\left(\bar{n}_{\alpha}+1\right) f
$$

Matt Smith, et al, Inorganic Chemistry, 2005, 44,5562
$\sim 0.1 \mathrm{meV}$, all-vacuum high resolution monochromator

Protonation state of oxo-ligand in heme protein intermediates:

$\underset{\text { comunctanions }}{\mathbf{J}|\mathbf{A}| \mathbf{C}}$

Published on Web 01/18/2008
Synchrotron-Derived Vibrational Data Confirm Unprotonated Oxo Ligand in Myoglobin Compound II

Weiqiao Zeng, ${ }^{\dagger}$ Alexander Barabanschikov, ${ }^{\dagger}$ Yunbin Zhang, ${ }^{\dagger}$ Jiyong Zhao, ${ }^{\ddagger}$ Wolfgang Sturhahn, ${ }^{\ddagger}$
E. Ercan Alp, \ddagger and J. Timothy Sage*, \dagger
J. AM. CHEM. SOC. 2008, 130, 1816-1817

Figure 1. Vibrational dynamics of the heme Fe reveal an unprotonated oxo ligand in $\mathrm{Mb}(\mathrm{IV})=\mathrm{O}$, in contrast with the bound hydroxyl group in Mb (III) -OH . Protonation of the oxo ligand results in a downshift of the $\mathrm{Fe}-\mathrm{O}$ stretching frequency from $805 \mathrm{~cm}^{-1}$ to $556 \mathrm{~cm}^{-1}$, and splits the $\mathrm{Fe}-\mathrm{O}$ tilting vibrations, which are degenerate near $362 \mathrm{~cm}^{-1}$ in $\mathrm{Mb}(\mathrm{IV})=0$, but are separated by $33 \mathrm{~cm}^{-1}$ in the asymmetrically protonated heme Mb (III)OH complex. Error bars represent the normalized experimental signal,

Fe-O stretching Fe-O tilting Fe-O tilting
 Downshift of $\mathrm{Fe}-\mathrm{O}$ stretching frequency by protonation of oxo-ligand

Lifting of degeneracy of tilting frequency by protonation of the oxo-ligand

The Mössbauer isotopes observed with synchrotron radiation (1985-2016)

Isotope	Energy (eV)	Half-life (ns)	$\Delta \mathrm{E}(\mathrm{neV})$	Tabulated $\mathrm{E}(\mathrm{eV})$
${ }^{181} \mathrm{Ta}$	6215.5	9800.	0.067	6238
${ }^{169} \mathrm{Tm}$	8401.3	4.	114.0	8409.9
${ }^{83} \mathrm{Kr}$	9403.5	147.	3.1	9400
${ }^{187} \mathrm{Os}$	9776.8	2.16	211.	
${ }^{57} \mathrm{Fe}$	14412.5	97.8	4.67	14413
${ }^{151} \mathrm{Eu}$	21541.4	9.7	47.0	21532
${ }^{149} \mathrm{Sm}$	22496.	7.1	64.1	22490
${ }^{119} \mathrm{Sn}$	23879.4	17.8	25.7	23870
${ }^{161} \mathrm{Dy}$	25651.4	28.2	16.2	25655
${ }^{129} \mathrm{I}$	27770.	16.8	27.2	27800
${ }^{40} \mathrm{~K}$	29834.	4.25	107.0	29560
${ }^{125} \mathrm{Te}$	35460	1.48	308.0	35491.9
${ }^{121} \mathrm{Sb}$	37129.	4.53	100.0	37133.
${ }^{129} \mathrm{Xe}$	39581.3	1.465	311.2	39578.
${ }^{61} \mathrm{Ni}$	67419.	5.1	89.0	67400
${ }^{73} \mathrm{Ge}$	68752	1.86	245.	68752
${ }^{176} \mathrm{Hf}$	88349.	1.43	319.4	83000
${ }^{99} \mathrm{Ru}$	89571.	28.8	15.8	89651.8
${ }^{67} \mathrm{Zn}$	93300.	9200.	0.049	

Thank you

