Single Crystal Diffraction

at a Synchrotron

Dr Christine M. Beavers 24th National School on Neutron & X-ray Scattering 11 July 2022

crys.tal.log.ra.phy the branch of science dealing with the formation and properties of crystals

What is a Crystal?

• A crystal is a periodic arrangement of matter

Search Escher tessellations for more

What is a Crystal?

- A Crystal is a three-dimensional repeating array of atoms or molecules.
- In this example, our molecule is going to be in a shoebox, for simplicity.

Dimensionality

Dimensionality

From Shoeboxes to Unit Cells

The dimensions of the Unit Cell are an identifying feature for a specific crystal!

This slide courtesy of Mark Warren, Diamond Light Source

Crystal to Structure

Crystal Selection #LifeGoals

Nice crystals are more likely to have nice diffraction

Diffractometer Schematic

SXD Diffractometer

Data Collection Schematic

Data Collection

Crystal to Structure

Indexing

🗹 Unit cell			
a [Å]	12.3052	±	0.0008
— Ь [Å]	12.3052		
c [Å]	12.3052		
α[*]	90.00		
β[*]	90.00		
···· y [*]	90.00		
	1863.2	±	0.4
Domain translation			
x [mm]	0.04		
y [mm]	-0.02		

Crystal to Structure

Data Integration

Crystal to Structure

Absorption Correction

Crystal to Structure

Why do I need a space group?

Escher loved his symmetry

• Tessellations are made using symmetry operations

Space Group Determination

Space Group Determination

62)

3.1. SPACE-GROUP DETERMINATION AND DIFFRACTION SYMBOLS

Table 3.1.4.1. Reflection conditions, diffraction symbols and possible space groups (cont.)

ORTHORHOMBIC, Laue class mmm (2/m 2/m 2/m) (cont.)

Reflection co	Reflection conditions								Laue class $mmm (2/m 2/m 2/m)$			
		AND THE REAL OF	and the second				Constant and	Point group				
hkl	Okl	hOl	hkO	h00	0k0	001	Extinction symbol	222	mm2 m2m 2mm	mmm		
	k+l	1	k		k	1	Pncb			Pncb (50)		
CATTY INTERNAL	$\left \begin{array}{c} k+l \\ k+l \end{array} \right $	1	h+k	h	k	1	Pncn	1074 10 1 10	1 1 1 1 1 1 1	Pncn (52)		
(and and	k+l	h+l		h	k	1	Pnn –		Pnn2 (34)	Pnnm (58)		
an messil	k+l	h+l	h	h	k	l	Pnna	14.1		Pnna (52)		
late month.	k+l	h+l	k	h	k	1	Pnnb			Pnnb (52)		
	k+l	h+l	h+k	h	k	1	Pnnn	1. 1.4	1. 300.24	Pnnn (48)		
h + k	k	h	h+k	h	k	mil nast	C	C222 (21)	Cmm2 (35	5) Cmmm (65		
	approximites 1								Cm2m (38	3)		
	RED WAR		1. 1 18 1				A Anna Anna Anna	A State	C2mm (3	8)		
1 1	k	h	h+k	h	k	l	$C2_1$	$C222_1$ (20)				
i + k		h	h. k	h	k		C(ab)		Cm2e (3	9) Cmme (6		
+ <i>K</i>	A	ⁿ						and the second	C2me (3	39)		
			$b \perp k$	h	k	1	C-c-	2.04-	Cmc21	(36) Cmcm (
+ k	K	n, l	$n + \kappa$	"	In In				C2cm (40)		
	and the second second	and the second second		1	1	1	C of ab		C2ce ((41) Cmce (
+k	k	h, l	h, k	n	K	l	C-c(ab)	, ,	CLCC ((20) 6		

Electron Density from Diffraction

Structure Solution diamond $\bar{F}_{hkl} e^{-i2\pi(hx+ky+lz)}$ ho_{xyz} -5 10 -3 0.01 0.45 -6 10 -3 -0.28 0.49 hkl -7 10 -3 -0.28 0.52 10 -3 0.56 -8 1.63 12 9 0.68 -3 1.15 -12 -9 0.66 3 0.64 9 -3 5.65 0.82 -9 3 6.17 0.77 -11 $\overline{F}_{hkl} = |F_{hkl}| \ e^{i\varphi_{hkl}}$ 0.65 9 -3 -0.14 -0.17 0.48 -10 -9 3 0.72 2.01 -3 3 2.11 0.51 -9 0.72 -3 4.10 9 0.82 6.25 ???? 5.89 0.63 0.95 9.05 9.79 0.79 0.72 4.40 SHELXT 0.65 7.25 0.84 8.03 SHELXS 0.73 7 17 SIR2011+ 5.660.71 0.65 4.98 **SUPERFLIP** 0.51 1.28 0.46 40 18.66 1.23 1.18 16.45 0.84 8.06 0.75 0 9 3 1788 122

What is a Structure?

👥 diamond

1-D Electron Density Map

Fobs Map at 2.50Å

Fobs Map at 2.0Å

Fobs Map at 1.75Å

Fobs Map at 1.50Å

Fobs Map at 1.25Å

Fobs Map at 1.00Å

Fobs Map at 0.75Å

Fobs Map at 0.50Å

Fobs and Difference Map 0.5Å

Crystal to Structure

Refinement & Validation

$$R_{1} = \frac{\sum_{hkl} \left| |F_{obs}| - |F_{calc}| \right|}{\sum_{hkl} \left| |F_{obs}| \right|}$$

$$wR_{2} = \sqrt{\frac{\sum_{hkl} w(F_{obs}^{2} - F_{calc}^{2})^{2}}{\sum_{hkl} w(F_{obs}^{2})^{2}}}$$

For More Information

Even More Information

More Resources!!!

Internet

- X-ray Forum
 - www.xrayforum.co.uk/
- IUCr Forum
 - forums.iucr.org
- CCP4
 - http://www.ccp4.ac.uk

Single Crystal Diffraction at a Synchrotron

Single Crystal Diffraction at a Synchrotron

or What can you do with more flux?

What can you do with more flux?

Contents

- Why do crystals diffract poorly?
- What can we do to them to make them diffract poorly?
- What can we learn from poorly diffracting crystals?
- What do synchrotrons have to do with all this?

The Spectrum of Crystallinity

The Spectrum of Crystallinity

- Good Crystals
 - Diffract kinematically(Bragg), due to mosaicity, but still have good long range order

0-0-0-0-0-0	000000000		0-0-0-0-0-0-0	
<u> </u>	00-00-00-00-00	00000000	0 0 <u>0 0 0 0 0</u> 0 0	0 0 00 00 00 00
· <u> </u>	00-00-00-00-00	00000000	0 0 0 0 0 0 0 0	000000000
888888°°	0000000000000000		0 00 0 0 0 00 00 0	000000000000000000000000000000000000000
0 8 8 8 8 8 8 9 ° °	00000000000000	0 0 00 00 00 00 00 00 00 00 00 00 00 00	0 00 0 0 0 00 00 00 0	0 0 00 00 00 00 0
0 8 8 8 8 8 8 8 ° °	0000000000000	000000000000000000000000000000000000000	00000000000000	
0 8 8 8 8 8 8 8 °	0 00 00 00 00 00 00 00 00 00 00 00 00 0	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000000
0-8-8-8-8-8-8-8-°	0 00 00 00 00 00 00 00 00 00 00 00 00 0	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000
0-0-0-0-0-0				
			00000000	
88880000	00000000		00000000	000000000000000000000000000000000000000
<u> </u>	00000000			000000000000000000000000000000000000000
0000000	0008000	000000000000000	00000000000000	000000000000000000000000000000000000000
0000000	00008000	00000000000000	0000000000000	000000000000000000000000000000000000000
	00000000	0000000000000000	0000000000000	
		00000000000000000		
		000000000	0-0-0-0-0-0-0	
		0-0-0-0		
			000000000000000000000000000000000000000	
				0000000
000000000000000000000000000000000000000				
	0.000000000	000000000000000000000000000000000000000		
	000000000000000000000000000000000000000	000000000000000000000000000000000000000		
	000000000000000000000000000000000000000	000000000000000000000000000000000000000		000000
	000000000000000000000000000000000000000			
	0-0-0-0-0	0-		
<u> </u>		- And And	220000	
<u> </u>				
<u> </u>				
				0000000
	~~~~~~			000000000000
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		000000000000000000000000000000000000000	00-00-00-00-00-00
	00800080	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
0-0-0-0-0-0-0-0-	~~~~	0_0_0		

The Spectrum of Crystallinity

- Poor crystals
 - Diffract kinematically(Bragg), but diffraction limited due to poor long range order.
 - Can show powder Laue rings/spot smearing due to mosiaicity becoming microcrystallinity
 - Can also display non-Bragg scatter due to TDS

Scattering Efficiency

Intensity of Diffraction
$$\approx \lambda^3 = \frac{LI_{incident}\langle |F_{hkl}^2| \rangle V_{crystal}}{V_{cell}^2}$$

Where:

- F = number of electrons per atom
- V_{crystal} = volume of the crystal
- V_{cell} = volume of the unit cell

M.M.Harding J. Synchrotron Radiation, 250-259 1996

Effect of disorder

Intensity vs. Displacement

Higher Angle Reflections Affected by **diamond** Larger ADPs

Fobs and Difference Map 0.5Å

Higher Angle Reflections Affected by **diamond** Larger ADPs

Wavelength

- The material and the wavelength need to be compatible
 - Short wavelengths better for heavy absorbers, samples that need high resolution, and sample environments with limited angular access
 - Long wavelengths better for light atoms (weakly diffracting elements)
 - Be aware of absorption edges and potential fluorescence from sample

Bigger isn't always better

- Large crystals aren't guaranteed to diffract better
- Crystal should match beam size
 - But if there is a choice, smaller than the beam is usually better
- Rocking width can be worse with large crystals due to poor mosaicity

In situ experiments

Structures from change.

In-situ Crystallography

- The application of a stimuli to produce structural change
 - Temperature
 - Pressure
 - Gas or Vacuum
 - Light
 - Electric or Magnetic Fields

Desolvation

Three-Way Crystal-to-Crystal Reversible Transformation and Controlled Spin Switching by a Nonporous Molecular Material Sanchez Costa et al., J. Am. Chem. Soc., 2014, 136 (10), pp 3869–3874 DOI: 10.1021/ja411595y

Photocrystallography

Experimental Procedure

X-ray beam 5 mm Beam Gap LED Crystal 70° gap for diffraction Diffraction

Procedure

- High quality ground state data collection
- Irradiation (LEDs) LED ring
- Metastable state data collection
- Inspection of the density map
- Temperature variation experiments

Gas Cell

Hydrated MOF

Dehydrated

NO absorbed

SO₂ absorbed

High Pressure with Diamond Anvil Cells

Why High Pressure?

"Pressure is highly efficient for

generating phase transitions and new phases,

for triggering new chemical reactions,

conformational and structural transformations of molecules,

polymerization,

polymorphism

and determining structure-property relations

which are of interest to chemists and physicists."

Katrusiak, A. Acta Cryst., Sect. A, 2007, 64, 135-148.

Exploring the Deep Earth...

...Without Any Digging

Deep Earth Pressures!

1 gigapascal (Gpa) = 145038 psi

One Elephant on a pushpin = 50GPa

Deep Earth Pressures!

Depth of the earth vs. Pressure

Luckily I'm usually doing chemistry...

Thanks to Helen Maynard-Casely(ANSTO) for this image!

A Diamond Anvil Cell

Diamond Anvil Cell (DAC)

Spin Crossover at Pressure

Alberto Rodriguez-Velamazan, J. *et al*; A Multifunctional Magnetic Material under Pressure. *Chemistry-a European Journal* **2014**, *20* (26), 7956-7961

Pb Halide Perovskites at Pressure

Jaffe, A. *et al*; High-Pressure Single-Crystal Structures of 3D Lead-Halide Hybrid Perovskites and Pressure Effects on their Electronic and Optical Properties. *ACS Central Science* **2016**, *2* (4), 201-209.

Retrofitting a MOF

Kapustin, E. A. *et al;* Molecular Retrofitting Adapts a Metal–Organic Framework to Extreme Pressure. *ACS Central Science* **2017**, *3* (6), 662-667.

Why Synchrotrons?

- In situ experiments usually produce the degradation of a crystal, and most are more successful with small crystals.
- Poorly diffracting crystals need as much intensity as they can take.
- In both cases, a synchrotron offers orders of magnitude more flux, which means a better chance of success.

wellcometrust

Science & Technology Facilities Council

The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231

COMPRES, the Consortium for Material Properties Research in Earth Sciences, is supported under NSF Cooperative Agreement EAR 11-57758.

