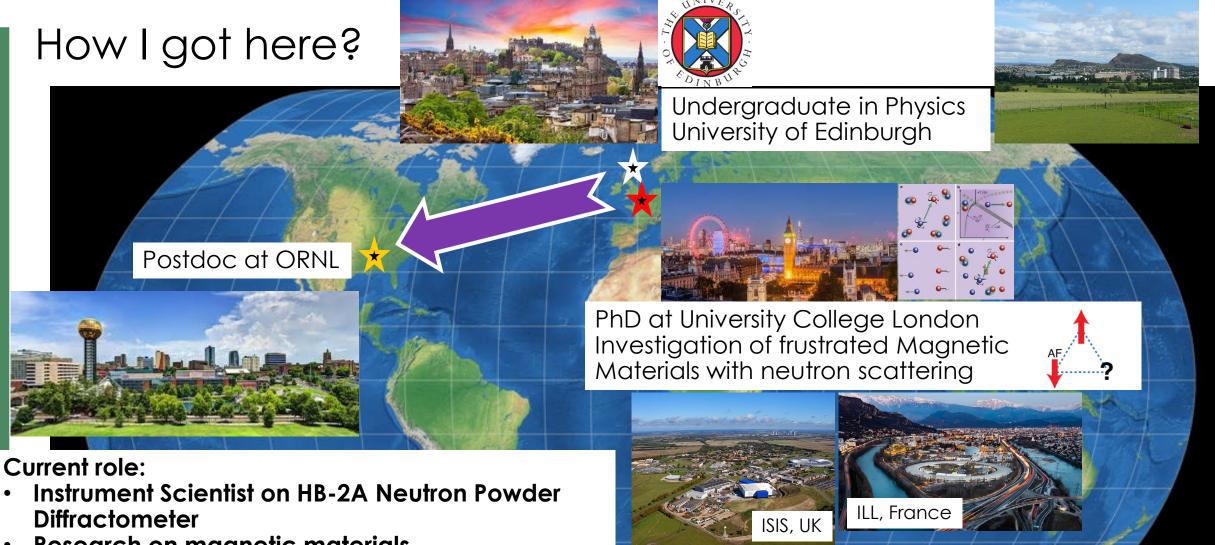


Diffraction at Time-of-Flight (TOF) vs **and** Continuous Sources (CS)


Stuart Calder

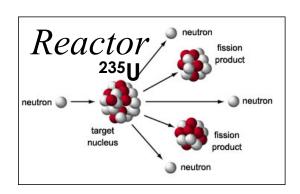
Neutron Scattering Division
Oak Ridge National Laboratory

- Research on magnetic materials
- Utilize the diverse neutron instruments at SNS/HFIR
- Collected data on 8/12 instruments at HFIR and 9/18 at SNS.

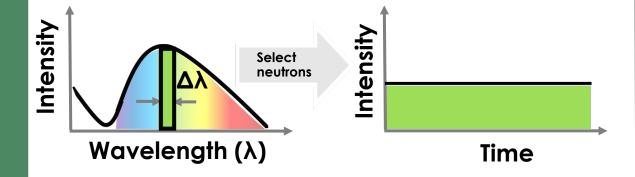
Presentation Overview: Diffraction at TOF vs and CS

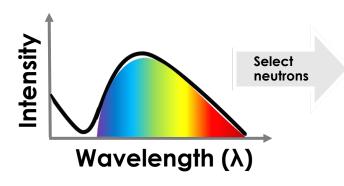
- General characteristics of TOF and CS
 - ORNL has both → use both!
- How the different sources impacts diffraction instruments
- Strengths for different experiments
- Consider which source is best suited to your science

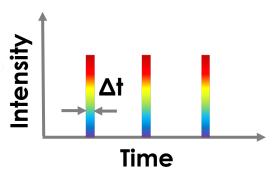
Always talk to an instrument scientist



Neutron Sources around the world


Neutron sources: Reactor (CS) and Spallation (TOF)

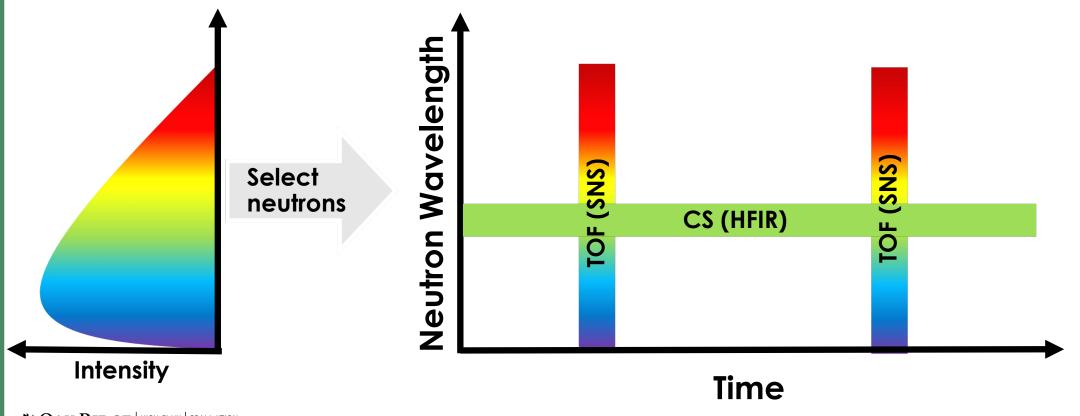




Small $\Delta\lambda$ used, but source on all the time

Each pulse of neutrons contains a broad spectrum of energy (λ)

Pulse of neutrons ~60 times per second


How do you like your neutrons?

CS (HFIR):

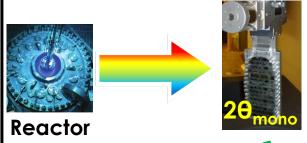
Some of the neutrons λ all the time?

TOF (SNS):

All the neutrons λ some of the time?

Neutron sources: Reactor (CS) and Spallation (TOF)

CS (HFIR): High flux over a chosen region.



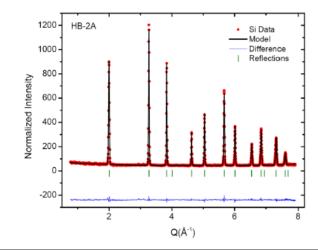
TOF (SNS): Large coverage.

What does this mean for diffraction experiments?

A typical CS diffractometer (HFIR)

Monochromator:

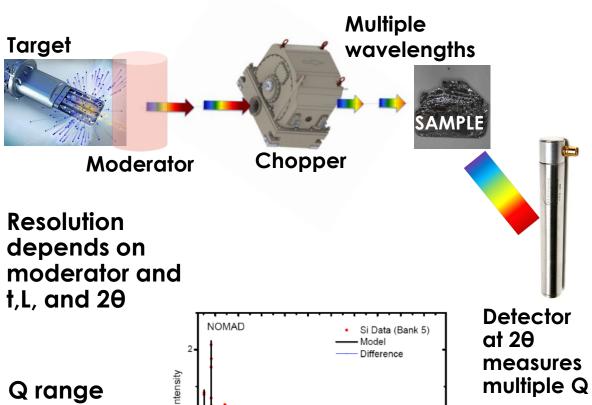
- selects λ.
- Control resolution.


Single wavelength

SAMPLE

Detector at 20 measures single Q

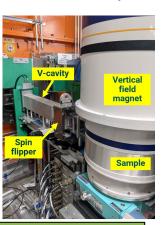
Q range limit is $4\pi/\lambda$


 $\lambda = 2d \sin \theta$

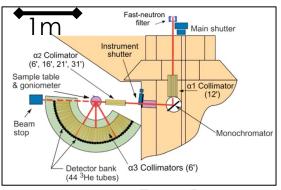
A typical TOF diffractometer (SNS)

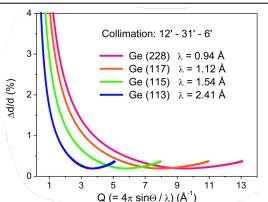
De Broglie wavelength: $\lambda = h/mv = ht/mL$

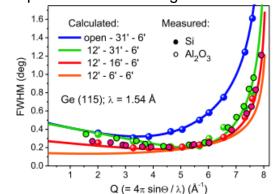
Bragg's law: $\lambda = 2d \sin \theta = \text{constant } * t$


Q range determined by λ_{min} , λ_{max} and 2θ

9

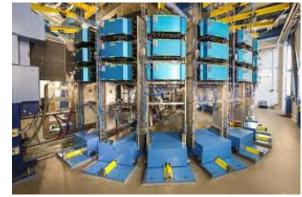

A typical CS diffractometer (HB-2A, HFIR)


Versatile: open sample space and compact

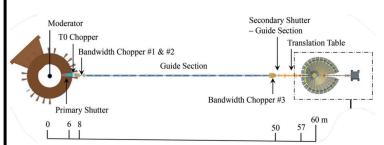


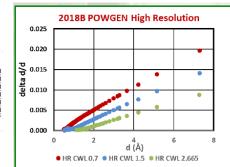
Ge(hkl)	λ (Å)	Q (Å-1)	Flux (n/cm²s)
(113)	2.41	0.2 - 5.1	5 x 10 ⁶
(115)	1.54	0.35 - 7.9	1 x 10 ⁷
(117)	1.12	0.5 - 10.9	4 x 10 ⁶

Resolution:


best resolution $\Delta d/d$: 1×10^{-3} Dependent on wavelengths and d

A typical TOF diffractometer (POWGEN, SNS)





Larger, more detector coverage

Freq (Hz)	WL center	WL min	WL max	dmin	dmax	Qmin	Qmax	Bank
60	0.533	0.15	1.066	0.075	7.50	0.82	83.45	0
60	0.800	0.27	1.333	0.134	8.00	0.76	46.88	1
60	1.500	0.97	2.033	0.485	13.00	0.48	12.95	2
60	2.665	2.13	3.198	1.070	21.00	0.30	5.87	3
60	4.797	4.26	5.33	2.140	38.00	0.17	2.94	4

Resolution: best resolution $\Delta d/d$: 1×10^{-4} Dependent on wavelengths and d

CS vs and TOF: Factors to consider for a diffraction experiment

Intensity (CS)

High flux

 Tune intensity with monochromator, collimators

Intensity (TOF)

- High peak brightness
- Balance of instrument distance, bandwidth, coverage

Intensity

CS vs TOF

Q-resolution (TOF)

- Highest resolution
- Complex asymmetric peak shape related to moderator characteristics

Q-resolution

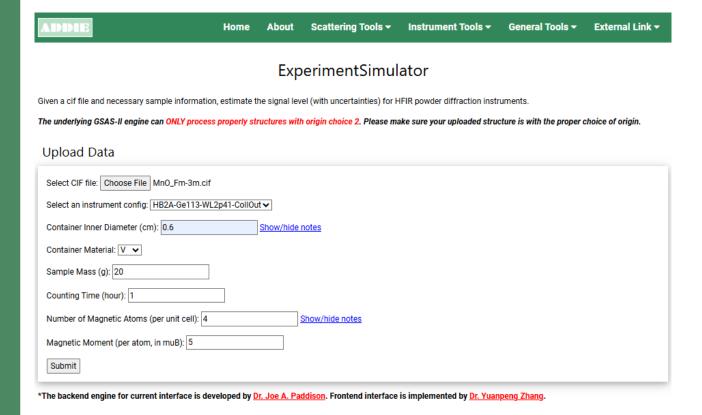
Q-resolution (CS)

- Tunable over Q-range
- Simple, symmetric peak shape function

Q-range (TOF)

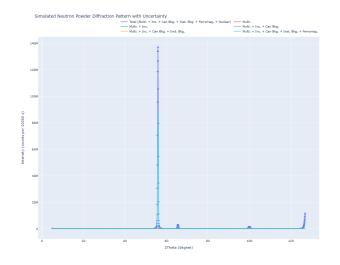
- Wide Q coverage
- Q_{max} can be very high (>100 Å⁻¹)
- Good coverage with even limited detectors

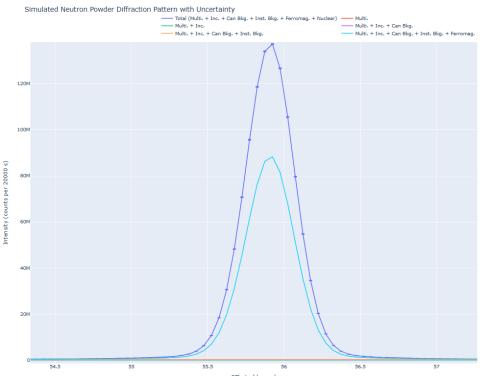
Q-range


Q-range (CS)

- Q range limited, but tunable
- Limited Q_{max} (~20 Å⁻¹)
- Need wide/continuous detector coverage

Do simulations. Lots of tools!




Ask an instrument scientist

what tools are available

National Laboratory REACTOR SOURCE

https://addie.ornl.gov/data_viz_hfirestimate

Some other strengths for diffraction experiments?

CS diffractometer at HFIR	TOF diffractometer at SNS
Main: High Flux beam, versatility	Main: Resolution and wide Q-range
Simple beam profile corrections - Absorbing, attenuating samples and holders	Count rate - Typically larger detector coverage, optimized beams
Open instruments with variable sample environment	High peak brightness
Beam is always on - Time dependent measurements	Pump probe measurements
Polarization is easier	Newer facility, STS

Sample Environment considerations

An instrument is only useful if the sample can be measured under the desired conditions.

https://neutrons.ornl.gov/sample

Equipment

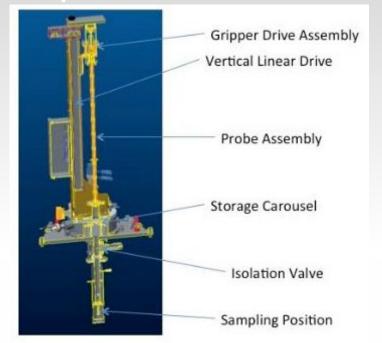
- Low Temperature & Magnetic Fields
- High Temperature & Engineering Materials
- High Pressure & Gas Handling
- Special Environments

To only show available items for specific beamline, use this filter.

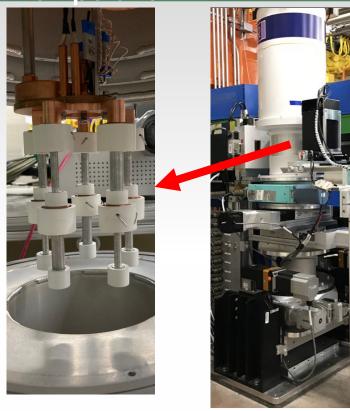
HB-2A ➤

ID	Sample Space Dia.	Temp Range	Instruments	Associated Resources	Subcategory	Description
ULT-E	40mm	0.03 to 300 K	CG-2, CG-3A, CG-4C, HB-1, HB-1A, HB-2A, HB-2C, HB-3	CRYO-A, CRYO-C, CRYO-O, MAG-B, MAG-E, MAG-G	Insert	Dilution Refrigeration Insert
ULT-G	40mm	0.3 to 300 K	CG-4C, HB-1, HB-1A, HB-2A, HB-2C, HB-3, HB-3A	CRYO-A, CRYO-C, CRYO-N, CRYO-O, MAG-B, MAG-I	Insert	Helium-3 Insert
ULT-H	40mm	0.03 to 300 K	CG-2, CG-4C, HB-1, HB-1A, HB-2A, HB-2C, HB-3, HB-3A	CRYO-A, CRYO-C, CRYO-N, CRYO-O, MAG-B, MAG-E, MAG-G, MAG-I	Insert	Dilution Insert
ULT-J	60mm	0.03 to 300 K	CG-4C, HB-1, HB-1A, HB-2A, HB-2C, HB-3	CRYO-D, CRYO-J, CRYO-K, CRYO-L, CRYO-M	Insert	Dilution Insert
ULT-K	40mm	0.3 to 300 K	CG-2, CG-4C, HB-1, HB-1A, HB-2A	CRYO-A, CRYO-N, CRYO-O, MAG-E, MAG-G, MAG-I	Insert	Helium-3 Insert
ULT-M		0.3 to 300 K	HB-2A, HB-2C, HB-3, HB-3A		Bottom Loading	

Ask an instrument scientist what is available


Types of Sample Changers

External Sample – External Manipulation


- 90 K to 573 K
- Open air environments
- Fast to load

Internal Sample – Internal Manipulation

- 20 K 300 K
- Only CCR range (not below 1 K)
- Slow to load

Internal Sample – Externat Manipulation

- 0.04 K to 700 K
- Full range plus magnets
- Slow to load, do it offline

Lots of diffraction instruments at HFIR/SNS

SNS (TOF)

- POWGEN
- NOMAD
- TOPAZ
- CORELLI
- MANDI
- SNAP
- VULCAN
- EQ-SANS
 - HYSPEC
 - **ARCS**
 - **SEQUOIA**
 - CNCS

Dynamics of macromolecules, constrained molecular systems, polymers, biology, chemistry, materials science

neutrons.ornl.gov/basis

SNAP • BL-3

Spallation Neutrons and

Pressure Diffractometer

Materials science, geology, earth and environmental sciences

neutrons.ornl.gov/snap

MAGREF • BL-4A

Magnetism Reflectometer Condensed matter, materials science and magnetism of interfaces

neutrons.ornl.gov/mr

LIOREF • BL-4B

Liquids Reflectometer

Interfaces in complex fluids, polymers, neutronsorn gov/lr

CNCS • BL-5

Cold Neutron Chopper

Spectrometer

Condensed matter physics, materials science,

chemistry, biology, environmental science

neutrons.ornl.gov/cncs

NOMAD • BL-1B

Nanoscale-Ordered Materials Diffractometer

Liquids, solutions, glasses, polymers, nanocrystalline and partially ordered complex materials

neutrons.ornl.gov/nomad

USANS • BL-1A

Ultra-Small-Angle Neutron Scattering Instrument Life sciences, polymers, materials science, earth

and environmental sciences neutrons.ornl.gov/usans

..... ARCS • BL-18

Wide Angular-Range Chopper Spectrometer

Atomic-level dynamics in materials science, chemistry, condensed matter

neutrons.ornl.gov/arcs

SEQUOIA • BL-17

Fine-Resolution Fermi

Chopper Spectrometer

Dynamics of complex fluids, quantum fluids, magnetism, condensed matter,

neutrons.ornl.gov/seguoia 🔷

■Vibrational Spectrometer

Vibrational dynamics in molecular systems, chemistry

VISION • BL-16B

neutrons.ornl.gov/vision

NSE • BL-15

Neutron Spin Echo Spectrometer High-resolution dynamics of slow processes, polymers, biological macromolecules

neutrons.ornl.gov/nse

HYSPEC • BL-14B

Hybrid Spectrometer

Dynamics of quantum materials with optional polarization analysis

neutrons.ornl.gov/hyspec

FNP • BL-13

Fundamental Neutron Physics Beam Line

Fundamental properties of neutrons neutrons.ornl.gov/fnpb

TOPAZ • BL-12

Single-Crystal Diffractometer

Atomic-level structures in chemistry, biology, earth science, materials science, condensed

matter physics

neutrons.ornl.gov/topaz

EQ SANS . BL &

Extended Q-Range Small-Angle Neutron Scattering Diffractometer

Polymers, soft materials and colloidal systems, materials science, life science, earth and environmental sciences

utrons.ornl.gov/egsap Under construction

VULCAN • BL-7

Engineering Materials Diffractometer Elastic Diffuse Scattering Spectrometer Mechanical behaviors, materials science, materials processing neutrons.ornl.gov/vulcan

ın user program

Detailed studies of disorder in crystalline materials neutrons.ornl.gov/corelli

CORELLI • BL-9

VENUS • BL-10

Versatile Neutron Imaging Instrument

Energy selective imaging in materials science, engineering,

materials processing, environmental sciences and biology

neutrons.ornl.gov/venus

MANDI • BL-11B

Macromolecular Neutron Diffractometer Atomic level structures of proteins, macromolecules and DNA neutrons.ornl.gov/mandi

POWGEN • BL-11A Powder Diffractometer

Atomic-level structures in chemistry, materials science, and condensed matter physics including magnetic structure neutrons.ornl.gov/powgen

ion Neutron Source is a facility managed by UT-Battelle for the US Department of Energy.

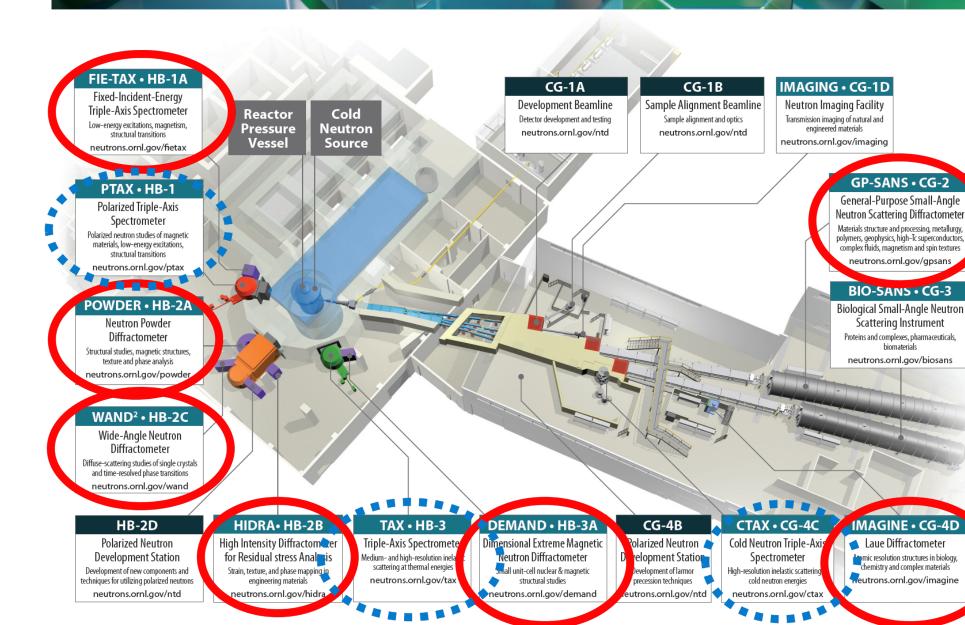
GP-SANS • CG-2

neutrons.ornl.gov/gpsans

BIO-SANS • CG-3

Scattering Instrument

Proteins and complexes, pharmaceuticals, biomaterials


neutrons.ornl.gov/biosans

IMAGINE • CG-4D

mic resolution structures in biology, chemistry and complex materials

Laue Diffractometer

- HB-2A
- DEMAND
- **IMAGINE**
- WAND²
- VERITAS (HB-1A)
- HIDRA
- **GP-SANS**
 - HB-1
 - HB-3
 - CTAX

OAK RIDGE ISOTOPE REACTOR

POWDER DIFFRACTION INSTRUMENTS

JMENTS	https://neutrons.ornl.gov/suites/diffraction	

Created in 2019	
Stedled III 2019	

Instrument	Туре	Methods	Applications	T (K)	P (GPa)	H (T)	Special	Resolution $(\Delta d/d)$	Q-range (Å-1)	Beam size H x V (mm)
HFIR HB-2A POWDER	constant wavelength	Rietveld	Magnetic structures	0.05 - 1800	< 0.6 gas cell < 2 clamp cell	< 7	Electric field	2 x 10- 3 (variable)	0.2 - 5.1 and 0.35 - 8	30 x 60
HFIR HB-2C WAND 2	constant wavelength	Rietveld, single- crystal	General purpose powder / single-crystal	0.05 - 1800	< 0.6 gas cell < 2 clamp cell	< 6	Humidity chamber	5 x 10-3	0.1 to 8.2	30 x 40
SNS BL-11A POWGEN	t-o-f	Rietveld, PDF	General purpose powder	10 - 300 (PAC) 2 - 300 (Orange cryo & Slim Sam) 5 - 500 (JANIS) 30 - 750 (JANIS) 300 - 1450 (MICAS) 300 - 1100 (with gas insert) (MICAS)		< 5	24 position sample changer (10 - 300 K), Gas Handling with pO2 and RGA	0.8 x 10-3	0.76 - 46.9 in one frame 0.17 - 46.9 with multiple frames	10 x 40
SNS BL-1B NOMAD	t-o-f	PDF, Rietveld	Disordered materials, glasses, liquids; high flux powder	90 - 1500 (Ar cryostream) 2 - 300 (Orange cryo) 425 - 11450 (ILL furnace, limited measuring time above 1100C) 1000 - 3500 (levitator)	0.02 - 0.2 gas cell (TiZr cell, high background)		Cryostream sample changer; gas handling, batteries	5 x 10-3 to 5 x 10-2	Typical 0.2 - 31.41, low Q limited to 0.4 in furnace and Orange cryo.	Typically 6 x 6 FWHM, Gaussian beam profile, generally 2cm filling height required.
SNS BL-3 SNAP	t-o-f	Rietveld	High pressure studies powder/ single- crystal	85 - 1350 (Paris Edinburgh) 300 - 1500 Paris Edinburgh (high T insert) 2 - 350 Clamp cell (Orange cryo) 10 - 1350 Diamond Anvil Cell (DAC) (bottom loader cryo) 10 - 350 Gas cell / Clamp	< 20 PE cell < 6 PE cell < 2 clamp cell 0.6 Gas cell < 40 DAC			8 x 10-3 (at 2θ = 90°)	0.8-30	Typical, 1 cm2 < 1 mm2 for DACs

4 - 1700 CCR

1.6 - 300 OC

0.05 - 300 DF

90 - 1450 LN2

4 - 1450 CCR

6 - 750 CCR

1.6 - 300 OC

85 - 1300 (PE

300 - 1500 (PE

2 - 350 (gas and

10 - 350 (DAC)

303 - 1873

(MICAS) 0.3 - 300 3He

10 GPa)

6 GPa)

clamp)

insert

10 - 1300 (DAC)

5-300 CCR

0.05 - 11800

Unit

cell

size (Å)

< 100

10 -

300

Q-range

(Å-1)

0.1-8.2

0.4 - 25

0.6 Å max

resolution

1.2 Å max

resolution

Electric current, Tunable beam 0.12-12

ed in 2019

(mm)

< 100 6 mm in diameter

to 30 x 60

2, 3 and 4 in

1, 3 and 5 in

diameter

diameter

10 x 10

< 150 3.2 × 2

Beam size H x V

Variable: 10 x 40

TRU	JME	NT	S

scattering

SINGLE CRY	STAL INS	TRUMENTS
Instrument	Type	Applications

constant

constant

t-o-f

t-o-f

t-o-f

t-o-f

wavelength cells

wavelength

HFIR HB-3A

HFIR HB-2C

SNS BL-12

SNS BL-11B

HFIR CG-4D

IMAGINE

SNS BL-9

CORELLI

SNS BL-3

SNAP

TOPAZ

MaNDi

WAND 2

DEMAND

Magnetic / nuclear structures; small unit cells

General purpose powder/single-crystal; small unit

General purpose; small & large unit cells; diffuse

Structural biology, supramolecular chemistry,

High pressure studies powder / single-crystal

magnetic / nuclear structures

Magnetic / nuclear diffuse scattering

Structural biology, macromolecules, small molecules 80 - 400

T (K) P (GPa)

H (T)

< 6

< 6

None

None

None

< 5

< 30 Pulsed

None

< 2 clamp cell

< 0.5 gas cell

< 2 clamp cell < 5 Cubic anvil cell < 20 PE cell (Room

T)

None

None

< 10 DAC

< 10 DAC

< 40 DAC**

< 20 PE cell

< 6 PE cell

0.7 Gas cell

< 2 clamp cell

< 1.8 clamp cell

< 4 GPa McWhan

< 10 DAC*

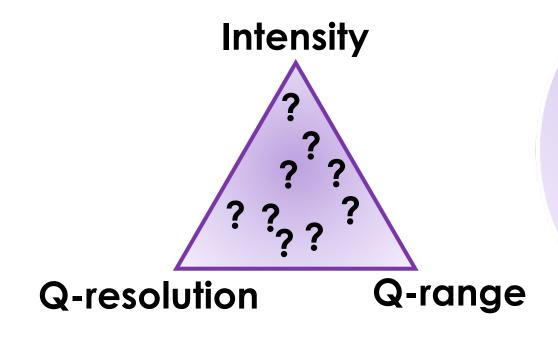
Special

divergence

Humidity chamber

Electric current

Kappa goniometer


Elastic discrimination

 $0.12 - 0.8^{\circ}$

Tunable beam divergence

Which instrument to choose? TOF or CS or both?

- It depends on the question to be answered in your science
 - Speak to an instrument scientist!
 - Do some homework (simulations, read papers, etc)

Other factors
Sample environment
Polarization
Pump-probe
Source stability
Sample absorption
Source availability
Mail-in

• • • •

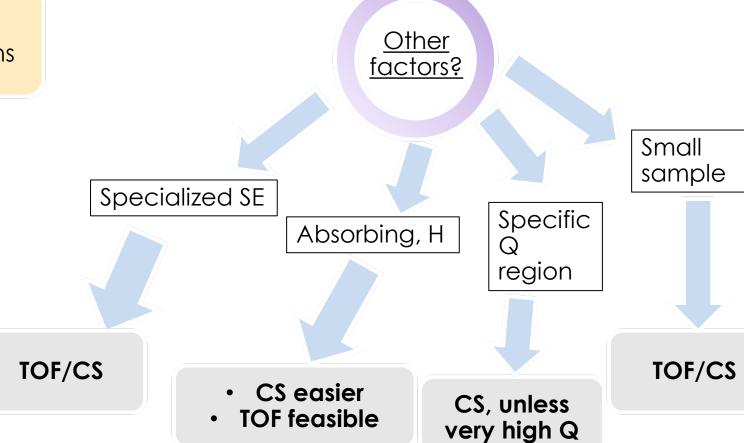
Let's consider some common questions diffraction can answer and match to strengths of sources

- Measure nuclear structure
- Measure magnetic structure
- Measure disorder in structure
- ... Lots more cases for you to consider!

Measure a crystalline structure

Need

To collect lots of Bragg reflections



Instrument should have

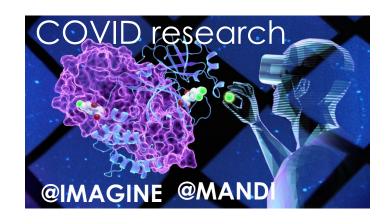
- High Q-resolution (TOF/CS)
- Large Q-range (TOF)
- High Q (TOF)

 Single crystal: TOF for largest unit cells, but CS can work well.

Measure the crystal structure

Instruments at HFIR/SNS

- Powder samples
 - POWGEN (TOF): High resolution and Q coverage
 - **NOMAD (TOF):** High flux and Q coverage
 - HB-2A (CS): Smaller unit cell, complex SE, absorbing samples.



Single crystals

- **DEMAND (CS):** Smaller unit cell inorganic materials

DEMAND (10⁴ Å³) TOPAZ (10⁵ Å³) IMAGINE (10⁶ Å³) MaNDi (10⁷ Å³)

- TOPAZ (TOF): High resolution and coverage for inorganic/organic and larger structures
- **IMAGINE (CS):** Quasi-Laue for macromolecules
- MANDI (TOF): Protein crystallography

Measure the Magnetic structure

Need

- To measure where magnetic scattering is strongest.
- Good signal to noise.
- Variety of sample conditions.

Instrument should have

- Low Q (CS/TOF)
- High intensity (CS)
- Low background (CS/TOF)
- Low T and magnets (CS)

Short-range order

Specialized SE

Polarization

Small sample

Specific

Q region

TOF/CS

 CS is typically best, but TOF has ever increasing options. TOF/CS Consider low Q or mPDF options

CS/ TOF

CS

CS easier.

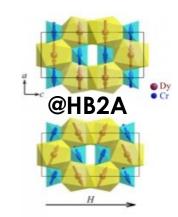
Other

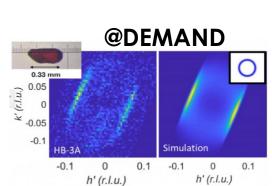
factors?

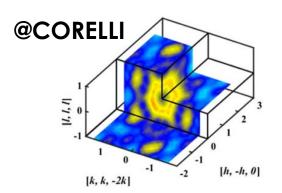
Absorbing, H

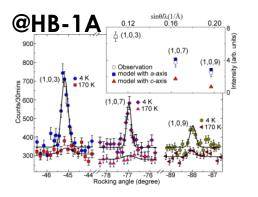
- Consider TAS.
 - TOF feasible

TOF/CS


- TOF: If need both high/low CS:
- One region

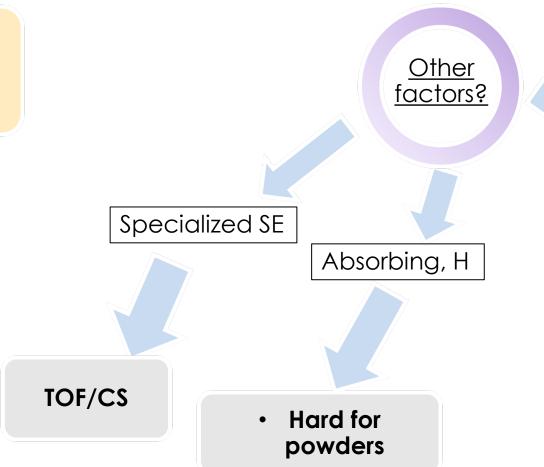


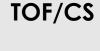

Measure the magnetic structure


Instruments at HFIR/SNS

- Powder samples
 - HB-2A (CS): Access low Q. Low Temperature and magnets.
 Polarization.
 - **POWGEN (TOF):** High resolution and Q coverage.
- Single crystal
 - DEMAND (CS): Low Q coverage and variety of sample environments. Polarization.
 - TOPAZ (TOF): Wide coverage in Q. New 5 K option.
 - CORELLI (TOF): Diffuse scattering. Variety of sample environments.
 - **GP-SANS (CS):** Very low Q for large spin textures (e.g. Skyrmions).
- Both Powder and single crystal
 - WAND² (CS): High flux → Long range and Diffuse signals
 - HB-1A (CS): Excellent signal-to-noise for weak signal

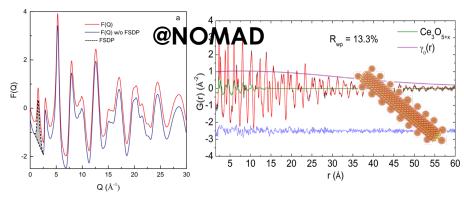
Disordered materials (PDF)

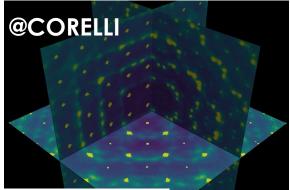

Need

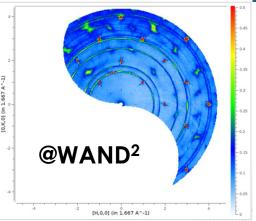

To access high Q and broad scattering

- Wide Q-range (TOF)
- High Q_{max} (TOF)
- High intensity (TOF/CS)

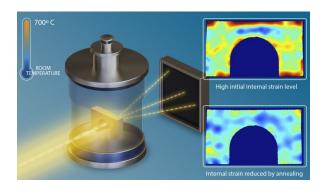
- TOF is typically best, especially for powders.
- But CS can work well.


Small


sample

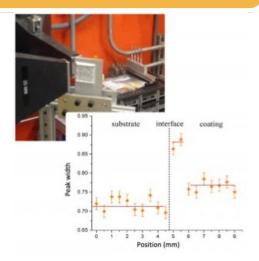

Disordered material (PDF)

Instruments at HFIR/SNS


- Powder
 - NOMAD (TOF): Dedicated total scattering beamline.
 - POWGEN (TOF): Longer counting, but better resolution if needed.
 - HB2A and WAND² (CS): Magnetic PDF (mPDF)
- Single crystal
 - **CORELLI (TOF):** Dedicated diffuse scattering beamline
 - TOPAZ (TOF): Large reciprocal space coverage
 - WAND² (CS): High flux and variety of sample environments

Many more diffraction experiments

Ke An Instrument Scientist


Yan Chen Instrument Scientist

Dunji Yu Instrument Scientis

VULCAN (TOF) In situ loading studies of crystalline/amorphous materials at high temperatures: phase transformation, fatigue damage, creep behaviors, and other deformation mechanisms in nanostructured materials, piezoelectric and shape-memory alloys.

Engineering diffraction Measure strain/stress

HIDRA (CS)

Jeffrey Bunn Instrument Scientist

Chris Fancher Instrument Scientist

- Optimized for strain measurement and determination of residual stress in engineering materials.
- Spatial resolution at a fraction of a millimeter is possible

Many more diffraction experiments

António M. dos Santos Instrument Scientist

Instrument Scientist

SNAP (TOF)

- Dedicated instrument for high pressure >100GPa.
- Powders and single crystals.
- Wide Q-coverage
- **PDF options**

High pressure diffraction

WAND², HB-2A, TAS (CS) **CORELLI** (TOF)

Variety of options for pressure measurements.

Dilip Bhoi

Review articles for the Diffraction Suite

REVIEW OF SCIENTIFIC INSTRUMENTS 89, 092701 (2018)

A suite-level review of the neutron powder diffraction instruments at Oak Ridge National Laboratory

S. Calder, ^{1,a)} K. An, ¹ R. Boehler, ^{1,2} C. R. Dela Cruz, ¹ M. D. Frontzek, ¹ M. Guthrie, ^{3,4} B. Haberl, ¹ A. Huq, ¹ S. A. J. Kimber, ¹ J. Liu, ¹ J. J. Molaison, ¹ J. Neuefeind, ¹ K. Page, ¹ A. M. dos Santos. ¹ K. M. Taddei, ¹ C. Tulk, ¹ and M. G. Tucker ¹

¹Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, Tennessee 37831, USA

(Received 6 April 2018; accepted 19 July 2018; published online 28 September 2018)

The suite of neutron powder diffractometers at Oak Ridge National Laboratory (ORNL) utilizes the distinct characteristics of the Spallation Neutron Source and High Flux Isotope Reactor to enable the measurements of powder samples over an unparalleled regime at a single laboratory. Full refinements over large Q ranges, total scattering methods, fast measurements under changing conditions, and a wide array of sample environments are available. This article provides a brief overview of each powder instrument at ORNL and details the complementarity across the suite. Future directions for the powder suite, including upgrades and new instruments, are also discussed. © 2018 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5033906

REVIEW OF SCIENTIFIC INSTRUMENTS 89, 092802 (2018)

A suite-level review of the neutron single-crystal diffraction instruments at Oak Ridge National Laboratory

L. Coates,^{1,a)} H. B. Cao,¹ B. C. Chakoumakos,¹ M. D. Frontzek,¹ C. Hoffmann,¹ A. Y. Kovalevsky,¹ Y. Liu,¹ F. Meilleur,^{1,2} A. M. dos Santos,¹ D. A. A. Myles,¹ X. P. Wang,¹ and F. Ye¹

¹Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, USA

²Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, USA

(Received 26 March 2018; accepted 9 July 2018; published online 24 September 2018)

The nascent suite of single-crystal neutron diffractometers at the Oak Ridge National Laboratory has no equal at any other neutron scattering facility worldwide and offers the potential to re-assert single-crystal diffraction using neutrons as a significant tool to study nuclear and magnetic structures of small unit cell crystals, nuclear structures of macromolecules, and diffuse scattering. Signature applications and features of single-crystal neutron diffraction are high resolution nuclear structure analysis, magnetic structure and spin density determinations, contrast variation (particularly D_2O/H_2O) for nuclear structural studies, lack of radiation damage when using crystals of biological molecules such as proteins, and the fidelity to measure nuclear and magnetic diffuse scattering with elastic discrimination. © 2018 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5030896

²Geophysical Laboratory, Carnegie Institution of Washington, Washington, District of Columbia 20015, USA

³European Spallation Source, Lund 221 00, Sweden

⁴University of Edinburgh, Edinburgh EH8 9YL, United Kingdom

Arianna Minelli Instrument Scientist CORELLI

ASK AN INSTRUMENT SCIENTIST!!!

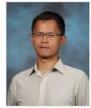
https://neutrons.ornl.gov/suites/diffraction

Andrev Kovalevsky IMAGINE, MANDI

Stuart Calder POWDER

Clarina dela Cruz POWDER

Danielle Yahne **POWDER**

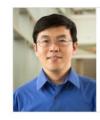

Joerg C. Neuefeind NOMAD

Dean Myles IMAGINE, MANDI

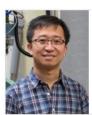
Yan Chen VULCAN

Cheng Li NOMAD, POWGEN

Jue Liu NOMAD


Qiang Zhang POWGEN

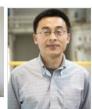
Alicia Manjón Sanz **POWGEN**


Ke An VULCAN

Xiaoping Wang TOPAZ

Thomas Proffen POWGEN

Huibo Cao DEMAND


Yan Wu DEMAND, WAND²

António M. dos Santos Instrument Scientist

Chris Ridley Instrument Scientist

Feng Ye CORELLI

Flora Meilleur IMAGINE, MANDI

Matthias Frontzek WAND²

Jeffrey Bunn HIDRA

Andrew Payzant HIDRA

Chris Fancher HIDRA

Si Athena Chen WAND²

Christina Hoffmann CORELLI, TOPAZ

Conclusions

ASK AN INSTRUMENT SCIENTIST!!!

https://neutrons.ornl.gov/suites/diffraction

- ORNL is unique in having world class CS and TOF instruments with different strengths.
- Choose the best instrument for your experiment based on your science.

Questions?

Lots of good options for diffraction at HFIR/SNS.

