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Outline

‣ What	is	diffuse	sca0ering?	
• What	does	it	look	like?	
• What	causes	it?	
• Who	started	it?	

‣ What	is	it	good	for?	
• A	random	walk	through	disordered	materials	

‣ How	do	I	model	it?	
• A	few	equa;ons	
• Rules	of	thumb	

‣ Case	Study	1:	Diffuse	sca0ering	from	vacancies	in	mullite	
‣ Case	Study	2:	Huang	sca0ering	in	bilayer	manganites	
‣ How	do	I	look	at	sta;c	disorder?	

• Neutrons	vs	X-rays	
• Corelli	-	Diffuse	sca0ering	with	elas;c	discrimina;on	

‣ Diffuse	sca0ering	-	the	musical
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Bragg Scattering vs Diffuse Scattering

3

Bragg Scattering 
Average Structure

Diffuse Scattering 
Deviations from the Average Structure
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Single Crystal Diffuse Scattering in 3D
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Simple Example of Disorder

‣ In	these	examples,	30%	of	atoms	(blue	dots)	have	been	replaced	by	vacancies	(green	dots)	
• LeX-Hand-Side:	random	subs;tu;on	
• Right-Hand-Side:	high	probability	of	vacancy	clusters	

- Thanks	to	Thomas	Proffen

5

Na;onal	School	on	Neutron	&	X-ray	Sca0ering	-	2016



Bragg Scattering

‣ Bragg	sca0ering	is	determined	by	the	average	structure.	
• Since	the	average	vacancy	occupa;on	is	iden;cal,	both	examples	have	iden;cal	Bragg	peaks
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Diffuse Scattering

‣ The	diffuse	sca0ering	is	quite	different	in	the	two	examples	
• Random	vacancy	distribu;ons	lead	to	a	constant	background	(Laue	monotonic	sca0ering)	
• Vacancy	clusters	produce	rods	of	diffuse	sca0ering	connec;ng	the	Bragg	peaks
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An Ultra-Short History of  
Advances in Diffuse Scattering
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Yttria-Stabilized Zirconia

T. Proffen and T. R. Welberry J. Appl. Cryst. 31, 318 (1998) 
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What is it good for?



Science Impacted by Diffuse Scattering
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‣ Subjects	iden;fied	at	the	Workshop	on	Single	Crystal	Diffuse	Sca8ering	at	Pulsed	Neutron	Sources	
• Stripes	in	cuprate	superconductors	
• Orbital	correla;ons	in	transi;on	metal	oxides	(including	CMR)	
• Nanodomains	in	relaxor	ferroelectrics	
• Defect	correla;ons	in	fast-ion	conductors	
• Geometrically	frustrated	systems	
• Cri;cal	fluctua;ons	at	quantum	phase	transi;ons	
• Orienta;onal	disorder		in	molecular	crystals	
• Rigid	unit	modes	in	framework	structures	
• Quasicrystals	
• Atomic	and	magne;c	defects	in	metallic	alloys	
• Molecular	magnets	
• Defect	correla;ons	in	doped	semiconductors	
• Microporous	and	mesoporous	compounds	
• Host-guest	systems	
• Hydrogen-bearing	materials	
• SoX	ma0er	-	protein	configura;onal	disorder	using	polariza;on	analysis	of	spin-incoherence	
• Low-dimensional	systems		
• Intercalates	
• Structural	phase	transi;ons	in	geological	materials



Diffuse Scattering from Metallic Alloys
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Short-range Order in Null Matrix 62Ni0.52Pt0.52

J. A. Rodriguez, S. C. Moss, J. L. Robertson, J. R. D. Copley, D. A. Neumann, and J. Major
Phys. Rev. B 74, 104115
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Diffuse Scattering from a Fast-Ion Conductor
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M. T. Hutchings et al J. Phys. C 17, 3903 (1984) 

CaF2



Diffuse Scattering from Molecular Solids
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T. R. Welberry et al J. Appl. Cryst. 36, 1400 (2003) 



Diffuse Scattering from Relaxor Ferroelectrics
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T. R. Welberry et al J. Appl. Cryst. 38, 639 (2005) 

Lead Zinc-Niobate

G. Xu, P. M. Gehring, G. Shirane, Phys. Rev. B 72, 214106 (2005). 

Lead Magnesium-Niobate

E=0 E||[111]



Magnetic Diffuse Scattering from Geometric Frustration
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S.-H. Lee et al Nature 418, 856 (2002) 

ZnCr2O4
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How do I model it?



A Few Equations

‣ Laue	Monotonic	Diffuse	Sca5ering	

‣ Cowley	Short-Range	Order	

‣ Warren	Size	Effect	

‣ Borie	and	Sparks	CorrelaCons
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Three-Dimensional Pair  
Distribution Functions

‣ The	ability	to	measure	three-dimensional	S(Q)	
over	a	wide	range	of	reciprocal	space	provides	
the	3D	analog	of	PDF	measurements.	
• Total	PDFs	if	Bragg	peaks	and	diffuse	sca0ering	
can	be	measured	simultaneously	

• Δ-PDFs	if	the	Bragg	peaks	are	eliminated	
- using	the	punch	and	fill	method	

‣ This	would	allow	a	model-independent	view	
of	the	measurements	in	real	space.
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Thermal Diffuse Scattering

‣ Lajce	vibra;ons	produce	devia;ons	from	the	
average	structure	even	in	perfect	crystals	

‣ X-ray	sca0ering	intensity	is	given	by	the	
integral	over	all	the	phonon	branches	at	each	Q
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M.	Holt,	et	al,	Phys	Rev	Le0	83,	3317	(1999).



Some Rules of Thumb (thanks to Hans Beat Bürgi)

Reciprocal	space	

‣ Only	sharp	Bragg	reflec;ons	

‣ Sharp	diffuse	rods	

‣ Sharp	diffuse	planes	

‣ Diffuse	clouds
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Direct	space		

‣ 3D-periodic	structure		
‣ no	defects		

‣ 2D-periodic	structure	
‣ perpendicular	to	the	streaks	

‣ disordered	in	streak	direc;ons		

‣ 1D-periodic	structure	
‣ perpendicular	to	the	planes	
‣ disordered	within	the	plane		

‣ 0D-periodic	structure	
‣ no	fully	ordered	direc;on	



Na;onal	School	on	Neutron	&	X-ray	Sca0ering	-	2016

21

Case Study 1: Mullite



Mullite - A Case Study
‣ Mullite	is	a	ceramic	that	is	formed	by	adding	O2+	vacancies	to	Sillimanite	

• Sillimanite	has	alterna;ng	AlO4	and	SiO4	tetrahedra	
• Mullite	has	excess	Al3+	occupying	Si2+	sites	for	charge	balance	

‣ This	results	in	strong	vacancy-vacancy	correla;ons
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Sillimanite: Al2SiO5 Mullite: Al2(Al2+2xSi2-2x)O10+x

AlO6 Octahedra

AlO4 Tetrahedra

SiO4 Tetrahedra

B. D. Butler, T. R. Welberry, & R. L. Withers, Phys Chem Minerals 20, 323 (1993)



Measuring X-ray Diffuse Scattering  
with Continuous Rotation Method
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Pilatus 2M Detector

‣ The	sample	is	con;nuously	rotated	in	shu0erless	mode	at	1°	per	second	
‣ A	fast	area	detector	(e.g.,	a	Pilatus	2M)	acquires	images	at	10	frames	per	second	

• i.e.,	3600	x	8MB	frames	~	30GB	every	6	minutes	

‣ The	detector	needs	low	background,	high	dynamic	range,	and	energy	discrimina;on	
• Ideally,	this	is	performed	with	high-energy	x-rays,	e.g.,	80	to	100	keV



Data Reduction Workflows
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Peak Search
Refinement and Orientation

Coordinate Transformation Data Projections



3D Diffuse Scattering in Mullite

‣ There	is	strong	diffuse	sca0ering	throughout	reciprocal	space	
‣ The	shape	of	the	diffuse	sca0ering	is	strongly	dependent	on	the	value	of	Ql	
‣ There	are	incipient	superlajce	peaks	at	Q	=	0.5	c*	+	0.31	a*

25

Na;onal	School	on	Neutron	&	X-ray	Sca0ering	-	2016

Ql=0.16 Ql=0.5 Ql=0.75



Monte Carlo Analysis
‣ In	a	classic	analysis,	Richard	Welberry	and 

colleagues	developed	a	set	of	interac;on	
energies	to	model	mullite	disorder		

‣ Interac;on	energies	were	ini;alized:	
‣ insights	from	chemical	intui;on	
‣ insights	from	the	measured	diffuse	sca0ering	

‣ The	diffuse	sca0ering	was	calculated	using	a	
Monte	Carlo	algorithm	to	generate	vacancy	
distribu;ons	first	in	2D	slices	and	then	in	3D
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B. D. Butler, T. R. Welberry, & R. L. Withers, Phys Chem Minerals 20, 323 (1993)
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Monte Carlo Analysis Results
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Vacancy Short-Range Order in Mullite 
A First-Principles Approach
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Lowest Energy 3:2 Mullite Structure 
from Kinetic Monte Carlo Calculation

Peter Zapol & Anh Ngo
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Nearly-Commensurate Vacancy Stripes in Mullite
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c = 0 c = 1.0
q = ±1

2
c⇤ ± 1

3
a⇤
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Case Study 1: Bilayer Manganites



Diffuse Scattering from Jahn-Teller Polarons
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Huang Scattering
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TDS + Huang scattering
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Cooperative Jahn-Teller Distortions

35

Na;onal	School	on	Neutron	&	X-ray	Sca0ering	-	2016

a
b

a
c

O(3a) O(3b)

O2

O1

ξ ~ 6a
B. J. Campbell, R. Osborn, D. N. Argyriou, L. Vasiliu-Doloc, J. F. Mitchell, S. K. Sinha, 
U. Ruett, C. D. Ling, Z. Islam, and J. W. Lynn, Physical Review B 65, 014427 (2001)

X-ray SCD data (115 keV 11-ID-C)



Origins of Stripe Formation

‣ Stripe	forma;on	is	a	very	common	mo;f	of	  
disordered	systems	

‣ It	is	the	response	of	a	system	with	interac;ons	 
that	compete	on	different	length	scales	
• e.g.,	long-range	repulsion	vs	short-range	a0rac;on
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Bilayer Manganites Revisited

37



Na;onal	School	on	Neutron	&	X-ray	Sca0ering	-	2016

Huang Scattering as a Function of (Qh, Qk, Ql)
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Expanding the Concept of a Data Set

39

39

0 1-1-2 2

1.7

2.0

2.3

l

h

0

28

29

212

214

216

210

Phase Diagram

Total Data: S(Q, T, x)

Correlated Data  
Analysis/ 
Machine Learning



Na;onal	School	on	Neutron	&	X-ray	Sca0ering	-	2016

40

How do I look at static disorder?



Importance of Elastic Discrimination
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T. R. Welberry et al J. Appl. Cryst. 36, 1400 (2003) 



Measuring Large Volumes of Reciprocal Space 
Conventional Time-of-Flight Neutron Methods
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White Beam: 
efficient

NO energy 
discrimination

Fixed ki : 
energy resolved

NOT 
efficient



M(t)

Sample with : 
elastic scattering

TOF Laue Diffractometer 
•highly efficient data collection 
•wide dynamic range in Q

Statistical Chopper 
•elastic energy discrimination 
•optimum use of white beam

inelastic excitations

Cross Correlation Chopper
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16

S. Rosenkranz and R. Osborn, PRAMANA- Journal of Physics, 71, 705 (2008).
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Arcangelo  Corelli  was  the 
greatest violinist of his age and 
an  influential  composer  who 
became known as the "Father 
of the Concerto Grosso".  This 
musical  form  contrasts  music 
from a small ensemble of solo 
musicians  with  the  full 
orchestra.   Similarly,  the 
properties  of  many  materials 
are  enriched  by  the 
interactions  between  both 
short  and long-range ordering 
motifs  that  the  Corelli 
instrument  is  designed  to 
explore.
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Corelli
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Instrument Scientists 
Feng Ye  
Yaohua Liu



Cross Correlation in Action
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Reconstructed Scattering FunctionCross 
Correlation
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Raw Data

inelastic 19
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First Results  
Benzil C14H10O2
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Does Cross Correlation Work?  
Benzil C14H10O2
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First Results  
Relaxor Ferroelectrics - Pb(Mg1/3Nb2/3)O3-30%PbTiO3
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Complementarity of Neutrons and X-rays 
Pb(Mg1/3Nb2/3)O3-30%PbTiO3
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CHESS 55keV X-raysCorelli Neutrons

Acknowledgement: Matt Krogstad, Daniel Phelan, Stephan Rosenkranz



The Future

‣ High-Energy	X-rays	
• Absorp;on	lengths	similar	to	neutrons	
• Most	exis;ng	detectors	have	low	efficiency	but	alterna;ves	exist,	e.g.	CdTe	

‣ Micro-diffuse	sca0ering	
• Benefi;ng	from	increased	brightness	of,	e.g.,	APS	Upgrade	

‣ Increasing	use	of	ab	ini?o	computa;onal	modeling	
• Allowing	more	complex	systems	to	be	inves;gated	
• Less	dependence	on	intui;on	in	modeling	

‣ Enhanced	analysis	tools	
• Machine	learning	
• Correlated	data	analysis	
• Easier	co-refinement	of	neutrons 
and	x-rays
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Diffuse Scattering Song
‣ Come	eager	young	scholars	-	so	tender	and	new 

I’ll	teach	you	diffrac;on	-	what	I	says	mostly	true 
Between	the	Bragg	Peaks	lies	a	world	where	you	see 
Fluctua;ons	and	defects-	they	stand	out	plane-ly	

‣ Chorus 
For	its	dark	as	a	dungeon	between	the	Bragg	peaks 
But	here	in	the	darkness	-	each	defect	speaks 
It	gathers-	from	throughout-	reciprocal	space 
And	re-distributes	all	over	the	place.	

‣ Between	the	Bragg	peaks	-	one	thing	that	we	see 
Is	TDS	on	our	CCD  
Intensity	totals	are	conserved-	you	can’t	win  
It	steals	from	the	Bragg	peaks	that	stay	very	thin	

‣ Subs;tu;onal	alloys	can	cause	quite	a	s;r 
The	shorter	the	length	scale	the	greater	the	blur 
With	care	you	can	find	out	the	bond	length	between 
Each	atom	pair	type-the	measurements	clean	

‣ Disloca;ons	and	other-	type	2	defects 
Destroy	the	Bragg	peaks	-they	turn	them	to	wrecks 
But	near	the	Bragg	peaks-	you	s;ll	can	see 
Intense	diffrac;on	con;nuously	

‣ Many	-are-	the	defects	you	find  
Between	the	Bragg	peaks	where	others	are	blind 
So	go	tell	your	friends	and	impress	your	boss  
You’ve	new	understanding	-with	one	hours	loss

54

Na;onal	School	on	Neutron	&	X-ray	Sca0ering	-	2016

Gene Ice

No defects

Defects of 1st kind

Defects of 2nd kind
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Krivoglaz Classifications


