

Single Crystal Diffuse Scattering

Ray Osborn

Neutron and X-ray Scattering Group Materials Science Division Argonne National Laboratory

Outline

- What is diffuse scattering?
 - What does it look like?
 - What causes it?
 - Who started it?
- What is it good for?
 - · A random walk through disordered materials
- How do I model it?
 - A few equations
 - Rules of thumb
- Case Study 1: Diffuse scattering from vacancies in mullite
- Case Study 2: Huang scattering in bilayer manganites
- How do I look at static disorder?
 - Neutrons vs X-rays
 - Corelli Diffuse scattering with elastic discrimination
- Diffuse scattering the musical

Bragg Scattering vs Diffuse Scattering

Bragg Scattering Average Structure

Single Crystal Diffuse Scattering in 3D

Simple Example of Disorder

- In these examples, 30% of atoms (blue dots) have been replaced by vacancies (green dots)
 - · Left-Hand-Side: random substitution
 - Right-Hand-Side: high probability of vacancy clusters
 - Thanks to Thomas Proffen

Bragg Scattering

- Bragg scattering is determined by the average structure.
 - Since the average vacancy occupation is identical, both examples have identical Bragg peaks

Diffuse Scattering

- The diffuse scattering is quite different in the two examples
 - Random vacancy distributions lead to a constant background (Laue monotonic scattering)
 - Vacancy clusters produce rods of diffuse scattering connecting the Bragg peaks

An Ultra-Short History of Advances in Diffuse Scattering

11

National School on Neutron & X-ray Scattering - 2016

Δ

T. Proffen and T. R. Welberry J. Appl. Cryst. 31, 318 (1998)

What is it good for?

Science Impacted by Diffuse Scattering

- Subjects identified at the Workshop on Single Crystal Diffuse Scattering at Pulsed Neutron Sources
 - Stripes in cuprate superconductors
 - Orbital correlations in transition metal oxides (including CMR)
 - Nanodomains in relaxor ferroelectrics
 - · Defect correlations in fast-ion conductors
 - Geometrically frustrated systems
 - Critical fluctuations at quantum phase transitions
 - Orientational disorder in molecular crystals
 - Rigid unit modes in framework structures
 - Quasicrystals
 - · Atomic and magnetic defects in metallic alloys
 - Molecular magnets
 - · Defect correlations in doped semiconductors
 - · Microporous and mesoporous compounds
 - Host-guest systems
 - Hydrogen-bearing materials
 - Soft matter protein configurational disorder using polarization analysis of spin-incoherence
 - Low-dimensional systems
 - Intercalates
 - · Structural phase transitions in geological materials

http://www.neutron.anl.gov/diffuse/

Diffuse Scattering from Metallic Alloys

Short-range Order in Null Matrix ⁶²Ni_{0.52}Pt_{0.52}

J. A. Rodriguez, S. C. Moss, J. L. Robertson, J. R. D. Copley, D. A. Neumann, and J. Major Phys. Rev. B 74, 104115

Diffuse Scattering from a Fast-Ion Conductor

12

Diffuse Scattering from Molecular Solids

T. R. Welberry et al J. Appl. Cryst. 36, 1400 (2003)

Diffuse Scattering from Relaxor Ferroelectrics

Magnetic Diffuse Scattering from Geometric Frustration

S.-H. Lee et al Nature 418, 856 (2002)

How do I model it?

A Few Equations

V. M. Nield and D. A. Keen *Diffuse Neutron Scattering From Crystalline Materials* (2001) T. R. Welberry *Diffuse X-ray Scattering and Models of Disorder* (2004)

$$I = \sum_{i} \sum_{j} b_{i} b_{j} \exp(i\mathbf{Q} \cdot \mathbf{r}_{ij})$$

Laue Monotonic Diffuse Scattering

J. M. Cowley, J. Appl. Phys. 21, 24 (1950)

$$I = \bar{b}^2 \sum_{ij} \exp(i\mathbf{Q} \cdot \mathbf{r}_{ij}) + N(\bar{b}^2 - \bar{b}^2); \ \bar{b}^2 = (c_A b_A + c_B b_B)^2; \ \bar{b}^2 = c_A c_B (b_B - b_A)^2$$

Cowley Short-Range Order

$$I_{diffuse} = Nc_A c_B (b_B - b_A)^2 + \sum_{ij} \alpha_i c_B c_A (b_B - b_A)^2 \exp(i\mathbf{Q} \cdot \mathbf{r}_{ij}); \quad \alpha_i = \left(1 - \frac{p_i}{c_A}\right)$$

- Warren Size Effect $I_{diffuse} = Nc_A c_B (b_B - b_A)^2 \left(1 + \sum_{ij} \alpha_i \exp(i\mathbf{Q} \cdot \mathbf{r}_{ij} + \sum_{ij} \beta_i \exp(i\mathbf{Q} \cdot \mathbf{r}_{ij}); \beta_i = f(\epsilon_{AA}^i, \epsilon_{BB}^i) \right)$
- Borie and Sparks Correlations

$$I = \sum_{i} \sum_{j} b_{i} b_{j} \exp\left(i\mathbf{Q} \cdot (\mathbf{R}_{i} - \mathbf{R}_{j})\right) \left[1 + i\mathbf{Q} \cdot (\mathbf{u}_{i} - \mathbf{u}_{j}) - \frac{1}{2} \left(\mathbf{Q} \cdot (\mathbf{u}_{i} - \mathbf{u}_{j})\right)^{2} + \dots\right]$$

Three-Dimensional Pair Distribution Functions

- The ability to measure three-dimensional S(Q) over a wide range of reciprocal space provides the 3D analog of PDF measurements.
 - Total PDFs if Bragg peaks and diffuse scattering can be measured simultaneously
 - Δ-PDFs if the Bragg peaks are eliminated
 - using the punch and fill method
- This would allow a model-independent view of the measurements in real space.

Z. Kristallogr. 2012, 227, 238–247 / DOI 10.1524/zkri.2012.1504 © by Oldenbourg Wissenschaftsverlag, München

The three-dimensional pair distribution function analysis of disordered single crystals: basic concepts

Thomas Weber* and Arkadiy Simonov

Laboratory of Crystallography, ETH Zurich Wolfgang-Pauli-Str. 10, 8093 Zurich, Switzerland

National School on Neutron & X-ray Scattering - 2016

238

Thermal Diffuse Scattering

- Lattice vibrations produce deviations from the average structure even in perfect crystals
- X-ray scattering intensity is given by the integral over all the phonon branches at each Q

$$I_0 \propto f^2 e^{-2M} \sum_{j=1}^6 \frac{|\mathbf{q} \cdot \hat{\mathbf{e}}_j|^2}{\omega_j} \operatorname{coth}\left(\frac{\hbar \omega_j}{2k_B T}\right).$$

M. Holt, et al, Phys Rev Lett 83, 3317 (1999).

Some Rules of Thumb (thanks to Hans Beat Bürgi)

Reciprocal space

Direct space

Only sharp Bragg reflections **3D-periodic structure** no defects 2D-periodic structure Sharp diffuse rods perpendicular to the streaks disordered in streak directions Sharp diffuse planes **1D-periodic structure** perpendicular to the planes disordered within the plane Diffuse clouds **OD-periodic structure** no fully ordered direction

Case Study 1: Mullite

Mullite - A Case Study

- Mullite is a ceramic that is formed by adding O²⁺ vacancies to Sillimanite
 - Sillimanite has alternating AlO₄ and SiO₄ tetrahedra
 - Mullite has excess Al³⁺ occupying Si²⁺ sites for charge balance
- This results in strong vacancy-vacancy correlations

Sillimanite: Al₂SiO₅

Mullite: Al₂(Al_{2+2x}Si_{2-2x})O_{10+x}

National School on Neutron & X-ray Scattering - 2016

B. D. Butler, T. R. Welberry, & R. L. Withers, Phys Chem Minerals 20, 323 (1993)

Measuring X-ray Diffuse Scattering with Continuous Rotation Method

- The sample is continuously rotated in shutterless mode at 1° per second
- A fast area detector (e.g., a Pilatus 2M) acquires images at 10 frames per second
 - *i.e.*, 3600 x 8MB frames ~ 30GB every 6 minutes
- > The detector needs low background, high dynamic range, and energy discrimination
 - Ideally, this is performed with high-energy x-rays, e.g., 80 to 100 keV

National School on Neutron & X-ray Scattering - 2016

1200 1400

1000

x_pixel

0.0000

3D Diffuse Scattering in Mullite

- There is strong diffuse scattering throughout reciprocal space
- The shape of the diffuse scattering is strongly dependent on the value of QI
- There are incipient superlattice peaks at $\mathbf{Q} = 0.5 c^* + 0.31 a^*$

Monte Carlo Analysis

- In a classic analysis, Richard Welberry and colleagues developed a set of interaction energies to model mullite disorder
- Interaction energies were initialized:
 - insights from chemical intuition
 - insights from the measured diffuse scattering
- The diffuse scattering was calculated using a Monte Carlo algorithm to generate vacancy distributions first in 2D slices and then in 3D

Interatomic vector	α_{Imn}	Interatomic vector	α_{lmn}
$\frac{1}{2}\langle 1 \ 1 \ 0 \rangle$	-0.24	<020>	+0.13
[1 1 0]	-0.23	$\frac{1}{2}$ <3 1 0>	+0.22
[1 - 1 0]	-0.05	$\frac{1}{2}$ <1 3 0>	-0.01
$\langle 1 0 0 \rangle$	-0.06	$\langle 1 0 1 \rangle$	+0.07
$\langle 0 1 \rangle$	+0.22	$\langle 0 1 1 \rangle$	-0.12
$\langle 0 0 1 \rangle$	-0.03	$\frac{1}{2}\langle 3 3 0 \rangle$	+0.17
$\frac{1}{2}[1 - 12]$	+0.12	$\langle 1 1 1 \rangle$	-0.01
$\frac{1}{2}$ [112]	+0.12	$\frac{1}{2}\langle 312\rangle$	-0.11
$\langle \overline{2} 0 0 \rangle$	-0.12	$\frac{\tilde{1}}{2}\langle 3 3 2 \rangle$	-0.07

B. D. Butler, T. R. Welberry, & R. L. Withers, Phys Chem Minerals 20, 323 (1993)

Monte Carlo Analysis Results

Vacancy Short-Range Order in Mullite A First-Principles Approach

Lowest Energy 3:2 Mullite Structure from Kinetic Monte Carlo Calculation

Nearly-Commensurate Vacancy Stripes in Mullite

c = 0

c = 1.0

$$\mathbf{q} = \pm \frac{1}{2}\mathbf{c}^* \pm \frac{1}{3}\mathbf{a}^*$$

Case Study 1: Bilayer Manganites

Diffuse Scattering from Jahn-Teller Polarons

Huang Scattering $I(\mathbf{Q}) = \sum e^{i\mathbf{Q}\cdot(\mathbf{R}_m - \mathbf{R}_n)} f_m f_n e^{-W_m} e^{-W_n} \langle (\mathbf{Q}\cdot\mathbf{u}_m)(\mathbf{Q}\cdot\mathbf{u}_n) \rangle$ m,n $I_{POL}(\mathbf{Q}) = N \left| F_{\mathbf{G}} \right|^{2} \sum_{\alpha, \beta, \gamma, \delta} \mathcal{Q}_{\beta} \mathcal{Q}_{\delta} \left(\sum_{i, i'} \frac{\varepsilon_{\alpha, \mathbf{q}, j} \varepsilon_{\beta, \mathbf{q}, j} \varepsilon_{\gamma, \mathbf{q}, j'} \varepsilon_{\delta, \mathbf{q}, j'}}{\omega_{\mathbf{q}, j}^{2} \omega_{\mathbf{q}, j'}^{2}} \frac{1}{\underline{j}} \sum_{m, n} \mathfrak{S}_{m, \alpha} \mathfrak{S}_{n, \gamma} e^{i\mathbf{q} \cdot (\mathbf{R}_{m} - \mathbf{R}_{n})}$ $I_{TDS}(\mathbf{Q}) = N \left| F_{\mathbf{G}} \right|^{2} \left(\frac{kT}{2M} \frac{1}{j} \sum_{\beta,\delta} Q_{\beta} Q_{\delta} \left(\sum_{i} \frac{\varepsilon_{\beta,\mathbf{q},j}^{*} \varepsilon_{\delta,\mathbf{q},j}}{\omega_{\mathbf{q},i}^{2}} \frac{1}{\dot{\mathbf{f}}} \right)$ $u_{m,\delta} = \int \frac{d^3 q}{\left(\frac{2\pi}{a}\right)^3} \sum_{\beta} \left(\sum_{j} \frac{\varepsilon_{\beta,\mathbf{q},j}^* \varepsilon_{\delta,\mathbf{q},j}}{\omega_{\mathbf{q},j}^2} \frac{1}{\sum_{j=n}^{\infty}} \mathfrak{S}_{n,\beta} e^{i\mathbf{q} \cdot (\mathbf{R}_m - \mathbf{R}_n)} \right)$ TDS 4xPOI Tota B. Campbell et al Phys. Rev. B. 67, 020409 (2003)

single crystal synchrotron x-ray scattering 11-ID-D, APS@Argonne

TDS + Huang scattering

TDS

polaron

Cooperative Jahn-Teller Distortions

B. J. Campbell, R. Osborn, D. N. Argyriou, L. Vasiliu-Doloc, J. F. Mitchell, S. K. Sinha, U. Ruett, C. D. Ling, Z. Islam, and J. W. Lynn, Physical Review B **65**, 014427 (2001)

Origins of Stripe Formation

- Stripe formation is a very common motif of disordered systems
- It is the response of a system with interactions that compete on different length scales
 - *e.g.*, long-range repulsion vs short-range attraction ⁻¹²-18

C. Reichhardt, C. J. Olsen, I. Martin & A. Bishop, EPL 61, 221–227 (2003).

National School on Neutron & X-ray Scattering - 2016

Bilayer Manganites Revisited

Huang Scattering as a Function of (Qh, Qk, Ql)

Expanding the Concept of a Data Set

How do I look at static disorder?

Importance of Elastic Discrimination

BENZIL

T. R. Welberry et al J. Appl. Cryst. 36, 1400 (2003)

Measuring Large Volumes of Reciprocal Space Conventional Time-of-Flight Neutron Methods

White Beam: efficient

Fixed k_i: energy resolved

World's most intense pulsed, accelerator-based neutron source

14-G00875A/gim

Arcangelo Porelli (1653-1713)

Arcangelo Corelli was the greatest violinist of his age and an influential composer who became known as the "Father of the Concerto Grosso". This musical form contrasts music from a small ensemble of solo musicians with the full Similarly, orchestra. the properties of many materials enriched the by are both interactions between short and long-range ordering that the Corelli motifs instrument is designed to explore.

Cross Correlation in Action

National School on Neutron & X-ray Scattering - 2016

Detector ∎ 1"x1"

43

statistical Chopper

First Results Benzil C₁₄H₁₀O₂

Acknowledgement: Richard Welberry (PI) and Christina Hoffmann

D3: Defects, Distortions, and Dynamics, June 27-28, 2016

Does Cross Correlation Work? Benzil C14H10O2

Acknowledgement: Richard Welberry (PI) and Christina Hoffmann

D3: Defects, Distortions, and Dynamics, June 27-28, 2016

First Results Relaxor Ferroelectrics - Pb(Mg_{1/3}Nb_{2/3})O₃-30%PbTiO₃

PMN

lo.k.a

0 1 2 3 4 5 6 [H,0,0]

PMN-40PT

PMN-30PT

PMN-50PT

6 [H,0,0]

5

0 1 2 3 4 5 6 [H,0,0]

4

3

2

1

0

[0,K,0]

PMN-35PT

Acknowledgement: Matt Krogstad, Daniel Phelan, Stephan Rosenkranz

National School on Neutron & X-ray Scattering - 2016

4

3

2

1

0

4

3

2

1

0

0

1

2 3

[0,K,0]

Complementarity of Neutrons and X-rays Pb(Mg_{1/3}Nb_{2/3})O₃-30%PbTiO₃

Corelli Neutrons

CHESS 55keV X-rays

Acknowledgement: Matt Krogstad, Daniel Phelan, Stephan Rosenkranz

D3: Defects, Distortions, and Dynamics, June 27-28, 2016

The Future

- High-Energy X-rays
 - Absorption lengths similar to neutrons
 - Most existing detectors have low efficiency but alternatives exist, e.g. CdTe
- Micro-diffuse scattering
 - Benefiting from increased brightness of, e.g., APS Upgrade
- Increasing use of *ab initio* computational modeling
 - Allowing more complex systems to be investigated
 - Less dependence on intuition in modeling
- Enhanced analysis tools
 - Machine learning
 - Correlated data analysis
 - Easier co-refinement of neutrons and x-rays

Atlas of Optical Transforms, Harburn, Taylor and Welberry (1975)

A Few References

- T. R. Welberry & B. Butler, Chem Rev **95**, 2369–2403 (1995).
- F. Frey, Acta Cryst B **51**, 592–603 (1995).
- T. R. Welberry & D. J. Goossens, Acta Cryst A 64, 23–32 (2007).
- D. A. Keen & A. L. Goodwin, Nature News **521**, 303–309 (2015).

Diffuse Scattering Song

- Come eager young scholars so tender and new I'll teach you diffraction - what I says mostly true Between the Bragg Peaks lies a world where you see Fluctuations and defects- they stand out plane-ly
- Chorus

For its dark as a dungeon between the Bragg peaks But here in the darkness - each defect speaks It gathers- from throughout- reciprocal space And re-distributes all over the place.

- Between the Bragg peaks one thing that we see Is TDS on our CCD Intensity totals are conserved- you can't win It steals from the Bragg peaks that stay very thin
- Substitutional alloys can cause quite a stir The shorter the length scale the greater the blur With care you can find out the bond length between Each atom pair type-the measurements clean
- Dislocations and other- type 2 defects
 Destroy the Bragg peaks -they turn them to wrecks
 But near the Bragg peaks- you still can see
 Intense diffraction continuously
- Many -are- the defects you find Between the Bragg peaks where others are blind So go tell your friends and impress your boss You've new understanding -with one hours loss

