EQSANS Data Reduction – Quick Reference for MantidPlot (updated 20170118)

EQ-SANS data reduction can be accomplished through two equivalent means: via the EQ-SANS interface in MantidPlot or by using scripts that are run in the MantidPlot python window. Your local contact will work with you to configure the reduction for the various instrument configurations that you use during your experiment.

1. Open the EQSANS Reduction GUI within MantidPlot

- a. From the MantidPlot menu, go to Interfaces \rightarrow SANS \rightarrow ORNL SANS.
- **b.** Ensure the selected instrument is EQSANS and the top of the new window reads "EQSANS Reduction". If needed, change to EQSANS from the new window by going to Tools → Change instrument and select 'SNS' and 'EQSANS'.

2. See the available data sets using the Data Catalog

le	Tools			EQSANS	Reduction		۲	0
Red	luction Options Detect	or Data	Data Catalog Da	ta Stitching Outp	ut Remote Jobs			
	Run		Title	Start	Time[s]	SDD[mm]	Comment	1
1	92250	detect	or warm up checks	17-12-17 10:31	570.407	1300		
2	89243	S-Emp	ty Ti cell 2.5m 2.5a	17-11-02 07:48	1153.36	2500		
з	89252	T-pora:	sil B 1.3m 2.5a	17-11-02 09:59	346.228	1300		
4	89219	T-Ti qui	artz windows 4m 10a	17-11-01 19:21	464.909	4000		
5	89152	T-AgBe	h 4m 2.5a	17-10-30 11:22	174.947	4000		
6	89153	S-Emp	ty 4m 2.5a	17-10-30 11:28	933.518	4000		
7	92143	S-banj	o 8m 12A	17-12-15 15:09	618.606	8000		-1
								81

- b. The data folder can be found in a consistent location for any experiment, which can either be typed directly in the field or browsed for:
 - i. Use the absolute path, which has the format: /SNS/EQSANS/IPTS-12345/data
 - ii. The table can be sorted by any column by clicking the title of the column. The sorting can either be in ascending or descending order.
- c. To see any newly collected runs in the Data Catalog, click the Refresh button.

3. Setting the parameters for the data reduction

a. Select the 'Reduction Options' tab.

Reduction Options	Detector Data Data Catalog Data Stitching Output Remote Jobs	
Reduction Optio	ns	
🗌 Monitor refe	rence Bro	wse
Absolute scale f	actor 1.0	
🗌 Calculate ab	solute scale factor	
Direct bear	n file Bro	owse
🗌 Beam s	pot diameter [mm] 25 Attenuator Transmission 1.0	
📝 Dark curren	file /SNS/EQSANS/shared/NeXusFiles/EQSANS/2017A_mp/EQSANS_75683_event.nxs Bro	owse
📝 Perform soli	d angle correction	
👿 Q resolution	Sample aperture diameter [mm] 10.0	
Low TOF [micros	ec] 0.0 High TOF [microsec] 0.0 🕑 Use configuration file 🐼 Correct TOF	
Radial averagin	Number of Q bins 200 💿 Linear Q binning 🔿 Log Q binning	
Output directory	Use data directory Select /SNS/EQSANS/IPTS-20196/shared Bro	owse
Experiment Para	ameters	
	or distance is updated automatically when a sample data file is selected. cted by hand by checking the boxes below.	
Detector dis	tance offset [mm] 0.0	
🗌 Sample-det	ector distance [mm] 0.0	
Mask		
👿 Use mask fr	om configuration file as applicable	
The data is only u	t your mask. Note that only the mask information, not the data, will be used in the reduction. sed to help you setting the mask. tion is saved separately so that your data file will NOT be modified.	
👿 Mask file	/SNS/EQSANS/shared/NeXusFiles/EQSANS/2017A_mp/beamstop60_mask_4m.nxs Browse Edit	Mask

- b. Under **Reduction Options**, if absolute scale factor has been calculated then enter its value for 'Absolute scale factor'. Otherwise, leave at 1 to not apply any scale factor.
- c. Check 'Dark current file' and enter the appropriate "dark current" run collected by the instrument team (found in /SNS/EQSANS/shared/NeXus/Files/EQSANS/[cycle]_mp/, where [cycle] is the current run cycle (2017A in the above example).
- d. Check 'Perform solid angle correction'.
- e. Check 'Q resolution' and enter the 'Sample aperture diameter [mm]' (typically 10.0, but check with local contact), select 'Use configuration file' and 'Correct TOF'.
- f. For 'Radial averaging' \rightarrow 'Number of Q bins', typical values are 200 and 'Linear Q binning'.
- g. For 'Output directory', check 'Select' and type (or browse to) your preferred output folder. A common folder to use is the IPTS shared folder (as in the example above). If you use the shared directory under the IPTS directory, your local contact can see the reduced data if they log into the analysis servers. If multiple people will be reducing data during an experiment, it is often helpful to create a subdirectory for each person in the shared directory to avoid file conflicts.
- h. Under Mask, check 'Use mask from configuration file as applicable'. Also check 'Mask file' and enter the appropriate beamstop mask file. See the current cycle machine physics folder for available beamstop masks. Your local contact also can show you how to make a custom mask, if needed.

4. Enter the parameters for the detector corrections to be applied

a. Select the 'Detector' tab.

eduction Options Detector	Data Data Catalog	Data Stitching Outpu	t Remote Jobs		
Beam Center					
	position 0.0000				
Use beam finder					
Fit direct beam	 Fit scattering dat 	а			
Data file	92150			Browse	Plot
Beam radius [pixels]	3.0				
ensitivity					
🗹 Perform sensitivity corr	rection				
Sensitivity data file	red/NeXusFiles/EQS/	ANS/2017A_mp/Sensitiv	ity_patched_thinPMMA_4m_	75789_event.nxs Browse	Plot
Allowed sensitivity range:	Min 0.4 Ma	ax 2.0			
Patch sensitivity Dra	w patch Create sen	sitivity file			
Flood Data Beam Cent	er				
👿 Use sample beam o	center				
X position 0.0000	Y position 0.0000				
🔲 Use beam finder					
Fit direct beam	 Fit scattering dat 	a			
Data file				Browse	Plot
D G CG THE					

- b. Under **Beam Center**, check 'Use beam finder' and 'Fit direct beam'.
- c. For Data file, enter your empty beam transmission run corresponding to the configuration (SDD, wavelength band) you are reducing. You can find the run number on the Data Catalog tab.
- d. Under **Sensitivity**, check 'Perform sensitivity correction'.
- e. For Sensitivity data file, enter the appropriate "thin PMMA" run collected by the instrument team (found in /SNS/EQSANS/shared/NeXus/Files/EQSANS/[cycle]_mp/, where [cycle] is the current run cycle (2017A in the above example).
- f. For Allowed sensitivity range, enter 0.4 and 2.0 for Min and Max, respectively.
- g. Under Flood Data Beam Center, ensure 'Use sample beam center' is checked.

5. Enter parameters into Data

a. Select the 'Data' tab. Here, you can just enter run numbers (instead of full path), provided the files are in one of your IPTS folders.

Reduction Options Detector Data Data Catalog Data Stitching Output Remote Jobs	
Scattering data file 92154 Sample thickness [cm] 0.1	Browse
 Treat comma-separated files as separate reduction jobs Transmission Calculate transmission Fix transmission 1.0000 +/- 0.0000 	
Sample direct beam data file 92152 Empty direct beam data file 92150	Browse
Beam radius (pixels) 5.0 Fit frames together Theta-dependent correction	
Background data file 92153	Browse
Transmission O Fix transmission 1.0000 +/- 0.0000	
Sample direct beam data file 92151	Browse
Empty direct beam data file 92150 Beam radius (pixels) 5.0	Browse
 Fit frames together Theta-dependent correction 	

- b. Enter your sample scattering run # for 'Scattering data file'. Multiple runs can be added by entering as commaseparated (and leaving the 'Treat comma-separated files as separate reduction jobs' box unchecked).
- c. Enter your sample holder (cuvette) path length for 'Sample thickness [cm]'.
- d. Under **Transmission** (in upper panel), enter your sample transmission run for 'Sample direct beam data file' and your empty beam transmission run for 'Empty direct beam data file'.
- e. Enter 5 for 'Beam radius (pixels)' and check 'Theta-dependent correction'.
- f. Check 'Background data file' and enter your background (solvent) scattering run #. Multiple runs can be added by entering as comma-separated. If you are going to subtract the background using the reduced I(Q) data file, such as if you have very weak scattering or have a sample with a high volume fraction, you may leave this unchecked. Your local contact will discuss how best to reduce your data.
- g. Under **Transmission** (in lower panel), enter your background (solvent) transmission run for 'Sample direct beam data file' and your empty beam transmission run for 'Empty direct beam data file'.
- h. Enter 5 for 'Beam radius (pixels)' and check 'Theta-dependent correction'.

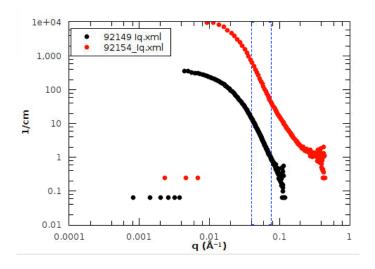
6. Reduce data

- Click the Reduce button at the bottom right of the GUI. Your reduced files will appear in the MantidPlot Workspaces panel normally found toward the right of the main MantidPlot window and in your designated Output directory.
- b. You can click the Save button to save this reduction setup for future use. Also, after performing a reduction, you can populate the GUI fields again by loading a reduction .xml file into the GUI by going to File \rightarrow Open.

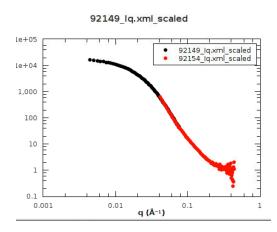
7. Export to script

- a. To create a Python script for performing batch reductions, click on the Export button at the bottom right. Save as a .py file.
- b. The saved script can be open in MantidPlot by clicking the 'Script Window' icon or going to View → Script Window.
 Within MantidPlot: Python Window, go to File → Open and choose your script.
- c. Advanced scripting that leverages the Python programming language is often used to automate reduction of a large number of files. Your local contact can help.

The example script below contains added comments to describe parameters that will need to be changed:


```
1 # EQSANS reduction script
2 # Script automatically generated on Thu Jan 11 10:47:16 2018
3
4 import mantid
5 from matid.simpleapi import *
6 from reduction workflow.instruments.sans.sns_command_interface import *
7 config = configService.instance0
8 config['instrumentName']='EQSANS'
9
10 EQSANS()
11 SolidAngle(detector_tubes=True)
12 DarkCurrent('/SNS/EQSANS/shared/NeXusFiles/EQSANS/2017A_mp/EQSANS_75683_event.nxs")
13 TotalChargeNormalization()
14 SetAbsOuteScale() # porasil scale factor
15 AzimuthalAverage(n_bins=200, n_subpix=1, log_binning=False)
16 [OXQV(fnbins=200)
17 OutputPath("/SNS/EQSANS/IPTS-20196/shared") # change directory to shared folder
18 UseConfigTOFTallsCutoff(True)
19 UseConfigMask[True]
20 DirectBeamCenter("92150") #trans empty beam
23 SensitivityCorrection("/SNS/EQSANS/MS/Shared/NeXusFiles/EQSANS/2017A_mp/Sensitivity_patched_thinPMMA_4m_75789_event.nxs",
24 DivideByThickness(0.1)
25 DirectBeamCenter("92152", "92150", beam_radius=5) #trans sample, trans empty beam
26 ThetaDependentFransmission(True)
27 AppendDataFile(["92153") #scattering background e.g. ("1", "2", "3") to add runs
28 combineFransmission("2151", "92150", beam_radius=5) #trans background, trans empty beam
31 BckDirectBeamTransmission("2151", "92150", beam_radius=5) #trans background, trans empty beam
32 BccontineFransmission("2151", "92150", beam_radius=5) #trans background, trans empty beam
32 BccontineTransmission("2151", "92150", beam_radius=5) #trans background, trans empty beam
31 BckDirectBeamTransmission("2151", "92150", beam_radius=5) #trans background, trans empty beam
32 Bcconterfransmission("2151", "92150", beam_radius=5) #trans background, trans empty beam
32 Bcconterfransmission("2151", "92150", beam_radius=5) #trans background, trans empty beam
32 Bcconterfransmission(True)
33 BccKonterBeamTransmission(True)
35 Bcduce()
34 Savel(Qroccess= None')
35 Bcduce()
```

8. Data Stitching


If 2 or 3 configurations were measured on the same sample, the 'Data Stitching' tab allows you to merge the data.

(q) file:	/SNS/EQSANS/IPTS-20196/shared/m	▼ Brow	
	 Normalize to this data set 	Scaling factor 45.4267103435	
		Min Q 0.042 Max Q 0.0699	
dium (2 /SNS/EQSANS/IPTS-20196/shared/m	c/92154 la.xml	▼ Brow
	 Normalize to this data set 	Scaling factor 1.0	

- a. Under **Low Q** 'I(q) file:', enter run for the "lower" Q data (or frame 2, if data was collected in frame-skipping mode). The .xml file can be found by using the Browse button.
- b. Under **Medium Q** 'I(q) file:', enter run for the "higher" Q data (or frame 1, if data was collected in frame-skipping mode). The .xml file can be found by using the Browse button.
- c. Check the 'Normalize to this data set' for the data you will normalize to.
- d. Click the 'Pick Overlap Region' button between the **Low Q** and **Medium Q** fields. In the Range Selector window, slide the vertical range selectors to cover the desired overlap range.

e. Go back to the 'Data Stitching' tab and click Auto Scale at the bottom right.

- f. If the merged data is accepted, go back to the 'Data Stitching' tab and click Save Result. If you wish to re-do the merge range then repeat steps e and f.
- g. There is an additional **High Q** field if 3 different configurations were measured. The lower 'Pick Overlap Region' button can be used for merging a 3rd configuration.
- h. Merging large numbers of files can also be scripted. Your local contact can help.