EQ-SANS

Extended Q-Range Small-Angle Neutron Scattering Diffractometer Spallation Neutron Source

BEAMLINE

SPECIFICATIONS

te	Source- o-sample distance	14 m
Ba	andwidth	3–4.3 Å
N	loderator	Coupled supercritical hydrogen
lr	ntegrated flux on sample	Up to ~10 ⁷ n/cm ² /s
	Q range	0.002 Å ⁻¹ < Q < 5 Å ⁻¹

DETECTOR		
Sample- to-detector distance	1.3–9 m	
Detector size	1 x 1 m	
Detector resolution	5.5 x 4.3 mm	

21-G02316/jdh Dec 2021

The EQ-SANS diffractometer is designed for the study of materials across length scales ranging from 0.1 to 100 nm. The high intensity provided by EQ-SANS enables both high-throughput experiments and time-resolved experiments facilitated by the pulsed source of SNS. EQ-SANS enables measurements over a wide Q-range at a single instrument configuration, providing improved throughput. The high maximum Q of the instrument allows both large- scale and local structure to be studied by the instrument. The versatility of SANS makes EQ-SANS broadly applicable to a wide range of materials in science and industry.

APPLICATIONS

Life science

- Solution structures of proteins, DNA, and other biological molecules and molecular complexes
- Protein-protein and protein-ligand interactions, kinase regulation
- Protein-membrane interaction, macro-organization of membranes
- Materials for drug delivery

Polymer and colloidal systems

- Block copolymers and dendrimers
- Micelles and emulsions
- Polyelectrolytes and ion distribution at solid-liquid interfaces

Materials science

- Simultaneous study of domain and crystalline structures
- Metallurgy, crystallization and precipitation
- Nanoparticles

Earth and environmental sciences

- Pore structure in soils
- Structure of geologic materials

For more information, contact

Changwoo Do, doc1@ornl.gov, 865.576.6981 Gergely Nagy, nagyg@ornl.gov, 865.341.0482 William Heller, hellerwt@ornl.gov, 865.241.0093 Carrie Gao, gaoy1@ornl.gov, 865.385.5488

neutrons.ornl.gov/eqsans

CAK RIDGE

Managed by UT-Battelle LLC for the US Department of Energy