Magnetism as seen with X-Rays

Elke Arenholz
Lawrence Berkeley National Laboratory
and
Department of Material Science and Engineering, UC Berkeley
Magnetic Materials Today

Magnetic materials for energy applications

Magnetic nanoparticles for biomedical and environmental applications

Magnetic thin films for information storage and processing
Magnetic Materials Characterization Wish List

- Sensitivity to ferromagnetic and antiferromagnetic order
- Element specificity = distinguishing Fe, Co, Ni, ...
- Sensitivity to oxidation state = distinguishing Fe$^{2+}$, Fe$^{3+}$, ...
- Sensitivity to site symmetry, e.g. tetrahedral, T_d; octahedral, O_h
- Nanometer spatial resolution
- Ultra-fast time resolution

Soft X-Ray Spectroscopy and Microscopy
Spectroscopy

Light/Photon Source → Monochromator → Sample

Intensity vs. Wavelength, Photon Energy

Incoming photon is absorbed by the atom

Excited state

Lowest energy level

Electron

Nucleus

Lowest energy level
Soft X-Ray Spectroscopy (ν ≈ 500-1000eV, λ ≈ 1-2nm)
X-Ray Absorption – Detection Modes

Electron yield:
+ Absorbed photons create core holes subsequently filled by Auger electron emission
+ Auger electrons create low-energy secondary electron cascade through inelastic scattering
+ Emitted electrons \(\propto \) probability of Auger electron creation \(\propto \) absorption probability
Soft X-Ray Absorption – Probing Depth

```
I_t = I_o e^{-\mu t}
```

Sample

<table>
<thead>
<tr>
<th>Element</th>
<th>10eV below L_3</th>
<th>at L_3</th>
<th>40 eV above L_3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$1/\mu$ [nm]</td>
<td>$1/\mu$ [nm]</td>
<td>$1/\mu$ [nm]</td>
</tr>
<tr>
<td>Fe</td>
<td>550</td>
<td>17</td>
<td>85</td>
</tr>
<tr>
<td>Co</td>
<td>550</td>
<td>17</td>
<td>85</td>
</tr>
<tr>
<td>Ni</td>
<td>625</td>
<td>24</td>
<td>85</td>
</tr>
</tbody>
</table>

~10-20 nm layer thick films supported by substrates transparent to soft x-rays
X-Ray Absorption – Detection Modes and Probing Depth

Electron sample depth: 2-5 nm in Fe, Co, Ni

⇒ 60% of the electron yield originates from the topmost 2-5 nm
X-Ray Absorption – Fundamentals

Experimental Concept:
Monitor reduction in x-ray flux transmitted through sample as function of photon energy

- charge state of absorber Fe$^{2+}$, Fe$^{3+}$
- symmetry of lattice site of absorber: O$_h$, T$_d$
- sensitive to magnetic order

Absorption probability: x-ray energy, x-ray polarization, experimental geometry

core level ⇒ atomic species of absorber Fe, Co, Ni,
‘White Line’ Intensity

Intensity of $L_{3,2}$ resonances is proportional to number of d states above the Fermi level, i.e. number of holes in the d band.
Intensity of $L_{3,2}$ resonances is proportional to number of d states above the Fermi level, i.e. number of holes in the d band.
X-Ray Absorption – Fundamentals

Experimental Concept:
Monitor reduction in x-ray flux transmitted through sample as function of photon energy

- Charge state of absorber Fe$^{2+}$, Fe$^{3+}$, ...
- Symmetry of lattice site of absorber: O_h, T_d
- Sensitive to magnetic order

- Absorption probability: x-ray energy, x-ray polarization, experimental geometry

- Core level ⇒ atomic species of absorber Fe, Co, Ni, ...

\[I_0 \rightarrow I_t = I_0 e^{-\mu t} \]

Sample
X-ray Absorption – Valence State

Influence of the charge state of the absorber

N. Telling et al., Appl. Phys. Lett. 95, 163701 (2009)

X-Ray Absorption – Configuration Model

Configuration model, e.g. L edge absorption:

+ Excited from ground/initial state configuration, $2p^6 3d^8$ to exited/final state configuration, $2p^5 3d^9$
+ Omission of all full subshells (spherical symmetric)
+ Takes into account correlation effects in the ground state as well as in the excited state
+ Leads to multiplet effects/structure

Ni$^{2+}$ in NiO: $2p^6 3d^8 \rightarrow 2p^5 3d^9$

http://www.anorg.chem.uu.nl/CTM4XAS/

J. Stöhr, H.C. Siegmann, Magnetism (Springer)
Experimental Concept:
Monitor reduction in x-ray flux transmitted through sample as function of photon energy

⇒ charge state of absorber Fe$^{2+}$, Fe$^{3+}$
⇒ symmetry of lattice site of absorber: O_h, T_d
⇒ sensitive to magnetic order

⇒ Absorption probability: x-ray energy, x-ray polarization, experimental geometry

core level ⇒ atomic species of absorber Fe, Co, Ni,
Sensitivity To Site Symmetry: Ti\(^{4+}\) \(L_{3,2}\)

- Electric dipole transitions: \(d^0 \rightarrow 2p^5 3d^1\)
- Crystal field splitting \(10D_q\) acting on 3d orbitals:

 Octahedral symmetry:
 - \(e\) orbitals towards ligands → higher energy
 - \(t_2\) orbitals between ligands → lower energy

 Tetragonal symmetry:
 - \(e\) orbitals → \(b_2 = d_{xy}\), \(e = d_{yz}, d_{yz}\)
 - \(t_2\) orbitals → \(b_1 = d_{x^2-y^2}\), \(a_1 = d_{3z^2-r^2}\)

J. Stöhr, H.C. Siegmann, Magnetism (Springer)
X-Ray Absorption – Lattice Symmetry

Influence of lattice site symmetry at the absorber

G. Van der Laan
Experimental Concept:
Monitor reduction in x-ray flux transmitted through sample as function of photon energy

- charge state of absorber Fe$^{2+}$, Fe$^{3+}$
- symmetry of lattice site of absorber: O_h, T_d
- sensitive to magnetic order

Absorption probability: x-ray energy, x-ray polarization, experimental geometry

Core level \Rightarrow atomic species of absorber Fe, Co, Ni, ...
Experimental Concept:
Monitor reduction in x-ray flux transmitted through sample as function of photon energy

⇒ charge state of absorber Fe$^{2+}$, Fe$^{3+}$
⇒ symmetry of lattice site of absorber: O_h, T_d
⇒ sensitive to magnetic order

⇒ Absorption probability: x-ray energy, x-ray polarization, experimental geometry

core level ⇒ atomic species of absorber Fe, Co, Ni,
Magnetic moments in Fe, Co, Ni well described by Stoner model:
d-bands containing up and down spins shifted relative to each other by exchange splitting

Spin-up and spin-down bands filled according to Fermi statistics

Magnetic moment $|m|$ determined by difference in number of electrons in majority and minority bands

$$|m| \propto \mu_B \left(n_e^{maj} - n_e^{min} \right)$$
Calculate transition probabilities from filled $2p_{3/2}$ and $2p_{1/2}$ states to empty states in d-band for circularly polarized x rays using Fermi’s Golden Rule
Origin of X-ray Magnetic Circular Dichroism

$$|f\rangle$$
final state $|f\rangle$
final state energy ε_f

$$|i\rangle$$
initial state $|i\rangle$
initial state energy ε_i

Wave functions describe electronic and photon states
Energies include electronic and photon energies
Origin of X-ray Magnetic Circular Dichroism

Calculate transitions probabilities T_{if} considering photon as time-dependent perturbation, i.e. an electromagnetic (EM) field.
Transition probability per unit time, T_{if}, from a state i to a state f

$$T_{if} = \frac{2\pi}{\hbar} \left| \langle f | \mathcal{H}_{\text{int}} | i \rangle \right|^2 \delta(\varepsilon_i - \varepsilon_f) \rho(\varepsilon_f)$$

Fermi’s Golden Rule

T_{if} Dimension [time$^{-1}$]

Initial state: wavefunction $|i\rangle$, energy ε_i

Final state: wavefunction $|f\rangle$, energy ε_f

$\rho(\varepsilon_f) = \text{density of final states per unit energy}$

\mathcal{H}_{int} interaction Hamiltonian,

product of momentum operator p and vector potential A

$$\mathcal{H}_{\text{int}} = \frac{e}{m_e} p \cdot A$$
Consider strong ferromagnet with one filled spin band:
- All spin down d states filled
- Spin up d states partially filled

This specific case:
Only spin up electron excited

X-ray absorption of circularly polarized photons with angular momentum $q = \pm 1$ in units of \hbar
Origin of X-ray Magnetic Circular Dichroism

\[q = +1 \quad q = -1 \quad q = 0 \]

\[m_j = \frac{-5}{2} \quad \frac{-3}{2} \quad \frac{-1}{2} \quad \frac{1}{2} \quad \frac{3}{2} \quad \frac{5}{2} \]

\[L_3: \text{X rays with } q = +/−1 \text{ excite } 62.5\%/37.5\% \text{ of the spin up electrons} \]

\[L_2: \text{X rays with } q = +/−1 \text{ excite } 25\%/75\% \text{ of the spin up electrons} \]
Taking into account 2x higher population of $2p_{3/2}$ state as compared to $2p_{1/2}$ state:

\Rightarrow Identical magnitude XMCD at L_3 and L_2 with opposite sign
X-Ray Magnetic Circular Dichroism (XMCD)

Magnitude of XMCD depends on:
+ expectation value of 3d magnetic moment
+ degree of circular photon polarization, P_{circ}
+ geometry

$|_{\text{XMCD}} = I_{\uparrow\downarrow} - I_{\uparrow\uparrow}$

Photon energy (eV)

X_{A} (arb. units)

X_{MCD} (arb. units)
X-Ray Magnetic Circular Dichroism (XMCD)

+ XMCD provides magnetic information resolving elements Fe, Co, ...
valence states: Fe$^{2+}$, Fe$^{3+}$, ...
lattice sites: octahedral, O$_h$, tetrahedral, T$_d$
+ Geobacter sulfurreducens bacteria form magnetite nanocrystals (15nm) via extracellular reduction of amorphous Fe(III)-bearing minerals

Magnetic Bionanospinels

Fe²⁺,_O_h

Fe³⁺,_{T_d}

Fe³⁺,_O_h

Co-ferrite-1
6 at% Co

Co-ferrite-2
23 at% Co

V. Cocker et al.,
Magnetic Bionanospinels

+ Geobacter sulfurreducens bacteria form magnetite nanocrystals (15nm) via extracellular reduction of amorphous Fe(III)-bearing minerals
Comparing XMCD spectra with model compounds and/or calculations
⇒ Identifying magnetic phases
The element-specificity makes XMCD measurements an ideal tool to determine induced moments at interfaces between magnetic and non-magnetic elements.

Magnetic Interfaces

- Weak Mn XMCD signal
 ⇒ Uncompensated Mn at Co/IrMn interface
- Same sign of XMCD signal for Co and Mn
 ⇒ Parallel coupling of Co and Mn moments
- Nominal thickness of uncompensated interface moments: (0.5±0.1)ML

A < 0 B > 0

+ Theoretically derived sum rules correlate XMCD spectra with spin and orbital moment providing unique tool for studying magnetic materials.

$$m_S = \mu_B \langle -A + 2B \rangle / C$$

$$m_L = -2\mu_B \langle A + B \rangle / 3C$$

J. Stöhr, H.C. Siegmann, Magnetism (Springer)
Strong variation of orbital and spin magnetic moment observable as change in relative L_3 and L_2 intensity in XMCD spectrum.

Co atoms and nanoparticles on Pt have enhanced orbital moments up to 1.1 μ_B

Element-specific Magnetization Reversal

Monitoring field dependence of XMCD

⇒ Element-specific information on magnetization reversal in complex magnetic nanostructures.
XMCD is the difference in x-ray absorption between antiparallel and parallel orientation of magnetic moment and photon spin.

The XMCD magnitude reflects the magnetic moment aligned parallel to the x-ray beam.
+ In fact:
Magnetic moments are not fully aligned with applied fields but precess around them.
+ In fact: Magnetic moments are not fully aligned with applied fields but precess around them.

+ Is it possible to measure the precession of magnetic moments making use of the pulsed nature of synchrotron radiation and XMCD?
X-Ray Ferromagnetic Resonance

Pulsed nature of synchrotron radiation
Example: Advanced Light Source

- 256-320 bunches for 500mA beam current
- Bunch spacing: 2 ns
- Pulse length 70ps

Pulse length 70 ps

bunch spacing
Dynamic XMCD measurement, i.e. synchronize x-ray pulses with FMR precession

X-ray pulse repetition signal, ~500 MHz
X-Ray Ferromagnetic Resonance

Static XMCD

Dynamic XMCD

XMCD (arb. units)

Photon energy (eV)

Microwave delay (ps)

FeCo\textsubscript{GaAs} XMCD.opj

XMCD (arb. units)

L\textsubscript{3}

L\textsubscript{2}

Co

x-rays

M(t)

M

M

X\textsubscript{A} (arb. units)
Precession is resonantly excited in the NiFe layer with an 4 GHz RF field.

The resonance field of the CO layer is higher, i.e. no precession is excited in the Co layer.

Precession in Py, Cu$_{75}$Mn$_{25}$, and Co layers are probed by XMCD using left- and right-circularly polarized x-rays at Ni, Mn, and Co edges, respectively.

The Cu$_{75}$Mn$_{25}$ spin precession is a direct indicator of the AC spin current through the structure.
X-Ray Linear Dichroism:

+ Difference in x-ray absorption for different linear polarization direction relative to crystalline and/or spin axis.
+ Due to the anisotropic charge distribution about the absorbing atom caused by bonding and/or magnetic order.
+ “Search Light Effect”: X-ray absorption of linear polarized x rays proportional to density of empty valence states in direction of electric field vector E.
Structural Changes In PbZr$_{0.2}$Ti$_{0.8}$O$_3$

- Spontaneous electric polarization due to off-center shift of Ti$^{4+}$, Zr$^{4+}$ associated with tetragonal distortion \Leftrightarrow linear dichroism

- Reversing ferroelectric polarization changes XA \Leftrightarrow Change in tetragonal distortion

X-Ray Magnetic Linear Dichroism

Isotropic d electron charge density
⇒ No polarization dependence

Magnetically aligned system
⇒ Spin-orbit coupling distorts charge density
⇒ Polarization dependence

$+ I_{XMLD} = I_{||} - I_{\perp} \propto \langle m^2 \rangle, \langle m^2 \rangle = \text{expectation value of square of atomic magnetic moment}$

$+ \text{XMLD allows investigating ferri- and ferromagnets as well as antiferromagnets}$

$+ \text{XMLD spectral shape and angular dependence are determined by magnetic order and lattice symmetry}$
X-Ray Magnetic Linear Dichroism

Isotropic d electron charge density
\Rightarrow No polarization dependence

Magentically aligned system
\Rightarrow Spin-orbit coupling distorts charge density
\Rightarrow Polarization dependence

$+ I_{\text{XMLD}} = I_{||} - I_{\perp} \propto \langle m^2 \rangle, \langle m^2 \rangle = \text{expectation value of square of atomic magnetic moment}$

$+ \text{XMLD allows investigating ferri- and ferromagnets as well as antiferromagnets}$

$+ \text{XMLD spectral shape and angular dependence are determined by magnetic order and lattice symmetry}$
Magnetic Coupling At Interfaces

La$_{0.7}$Sr$_{0.3}$MnO$_3$ (LSMO) ferromagnet
La$_{0.7}$Sr$_{0.3}$FeO$_3$ (LSFO) antiferromagnet

\Rightarrow Perpendicular coupling at LSMO/LSFO interface

Planar Domain Wall

Magnetic Microscopy
Magnetic Microscopy

10-50 nm spatial resolution

J. Stöhr, H.C. Siegmann, Magnetism (Springer)
+ Images taken with left and right circularly polarized x-rays at photon energies with XMCD, i.e. Co L_3 edge, provide magnetic contrast and domain images.

Magnetic Coupling At Co/NiO Interface

Taking into account the geometry dependence of the Ni XMLD signal

⇒ Perpendicular coupling of Co and NiO moments at the interface.

Magnetic Vortices

+ First direct observation of vortex state in antiferromagnetic CoO and NiO disks in Fe/CoO and Fe/NiO bilayers using XMCD and XMLD.

+ Two types of AFM vortices:
 - conventional curling vortex as in ferromagnets
 - divergent vortex, forbidden in ferromagnets
 - thickness dependence of magnetic interface coupling

J. Wu et al., Nature Phys. 7, 303 (2011)
Nanoscale Magnetic Phases

+ BiFeO$_3$ – multiferroic = ferroelectric + antiferromagnetic
+ Compressive strain on rhombohedral phase (R-phase) induced by substrate
 ⇒ tetragonal-like phase (T-phase)
+ Partial relaxation of epitaxial strain
 ⇒ Formation of a nanoscale mixture of T- and R-phases

Q. He et al., Nature Comm. 2, 225 (2011)
Highly distorted R-phase is the source of enhanced magnetic moment in the XMCD image.

Q. He et al., Nature Comm. 2, 225 (2011)
Ultrafast Magnetism

+ Energy reservoirs in a ferromagnetic metal
+ Deposition of energy in one reservoir

⇒ Non-equilibrium distribution and subsequent relation through energy and angular momentum exchange

Electron-phonon relaxation time

Electron-spin relaxation time

Spin-lattice relaxation time

J. Stöhr, H.C. Siegmann, Magnetism (Springer)
Ultrafast Dynamics Of Spin And Orbital Moments

+ Orbital (L) and spin (S) magnetic moments can change with total angular momentum is conserved.
+ Efficient transfer between L and S through spin–orbit interaction in solids
+ Transfer between L and S occurs on fs timescales.

+ Co$_{0.5}$Pt$_{0.5}$ with perpendicular magnetic anisotropy
+ 60 fs optical laser pulses change magnetization
+ Dynamics probed with XMCD using 120fs x-ray pulses

+ Linear relation connects Co L_3 and L_2 XMCD with L_z and S_z using sum rules

Ultrafast Dynamics Of Spin And Orbital Moments

+ Thermalization: Faster decrease of orbital moment
+ Theory: Orbital magnetic moment strongly correlated with magnetocrystalline anisotropy
+ Reduction in orbital moment
 \Leftrightarrow Reduction in magnetocrystalline anisotropy
+ Typically observed at elevated temperatures in static measurements as well

![Graph showing spin and orbital moments](image)

S_z and L_z vs. delay (ps)

$\tau_{th} = 280 \pm 20$ fs

$\tau_{th} = 220 \pm 20$ fs

Electron-phonon relaxation time τ_{el-lat}

Electron-spin relaxation time τ_{el-sp}

Spin-lattice relaxation time τ_{lat-sp}
References And Further Reading

J. Stöhr, H.C. Siegmann
Magnetism—From Fundamentals to Nanoscale Dynamics
Springer