The FNPB provides neutron beams for a variety of experiments in nuclear and particle physics. This facility is designed to accommodate two classes of experiments: (1) cold neutron experiments that require intense, broad-spectrum beams and (2) ultracold neutron experiments in which neutrons of ~1 meV are “down-converted” to near-zero energy in superfluid liquid helium. Experiments at the FNPB include precise measurements of the parameters that describe neutron beta decay, studies of the weak interaction between quarks, and a search for a non-zero neutron electric dipole moment. Each of the experiments at the FNPB requires the development, construction, and installation of major pieces of experimental equipment, and each experiment can take beams for periods of from several months to a few years.

FNPB is funded and operated by the Oak Ridge National Laboratory Physics Division.

Applications

The FNPB is designed to address questions of interest in cosmology, nuclear and particle physics, and astrophysics. Among the questions that will be addressed are the origin of the light elements (big bang nuclear synthesis), the source of the cosmic matter-antimatter asymmetry, and the origin of parity violation.