

Fast X-ray Imaging and Diffraction

Lianyi Chen

Charles Ringrose Associate Professor Department of Mechanical Engineering Department of Materials Science and Engineering University of Wisconsin-Madison Email: lianyi.chen@wisc.edu Phone: 608-890-0664

25th National School on Neutron and X-ray Scattering, ANL, August 15, 2023

32-ID: Dr. Tao Sun (UVA) Dr. Kamel Fezzaa Dr. Samuel Clarke

1-ID: Dr. Andrew Chuang

Outline

- Introduction to fast X-ray imaging and diffraction
- Fast X-ray imaging system
- Fast X-ray diffraction system
- Revealing dynamics of additive manufacturing processes by fast X-ray imaging and diffraction
- Approaches to mitigate/eliminate defects in additive manufacturing

What is **fast** X-ray imaging and diffraction?

Why do we need fast X-ray imaging and diffraction?

- Fluid dynamics
- Energetic materials and rapid reactions
- Dynamic loading
- Materials machining and processing
- Additive manufacturing

Dynamic irreversible and non-repeatable materials and engineering processes

What are the major technical challenges?

- Signal to noise ratio
- Exposure time and frame rate
- Timing
- Data processing and management

High flux X-ray beam

32-ID beamline undulator sources

□ U33 (white beam)

- Length: 2.4 m
- Period: 3.3 cm
- Min Gap: 11 mm
- E1 range: 5~14 keV
- $\Delta E_1 / E_1 : 1 \sim 2\%$

□ U18 (pseudo pink beam)

- Period: 1.8 cm
- Min Gap: 11 mm
- E₁ range: 23.7~25.7 keV
- ∆E₁/E₁: 5~10%

Undulator		Integrated over 1-65 keV		1st harmonic	
Period (cm)	Gap(mm)	Flux*	Singlet	Flux	Singlet
3.3	20	1.8x10 ¹⁶	2.8x10 ⁹	1.3x10 ¹⁶	2.0x10 ⁹ (71%)
	30	4.7x10 ¹⁵	7.3x10 ⁸	4.5x10 ¹⁵	6.9x10 ⁸ (95%)
1.8	11	4.5x10 ¹⁶	6.9x10 ⁹	4.1x10 ¹⁶	6.3x10 ⁹ (92%)

* Unit: ph/s/0.1%BW, 1.5x1.5 mm² beam size

Temporal resolution

Exposure time:

32-ID

- Camera specs (CMOS: 100s' ns; Hybrid-CMOS: 50 ns)
- Scintillator decay time

Given Frame rate:

- Camera specs (CMOS: 1 MHz; Hybrid-CMOS: 10 MHz)
- Needed field-of-view for experiment
- X-ray pulse structures

24-bunch mode: MHz imaging with single pulse exposure

Hybrid mode: Fixed frame rates, but stronger single pulse

324-bunch mode: Experiments with > μ s exposure, no intensity fluctuation in each image

Timing

A laser beam moves at a speed of 1 m/s along the horizontal direction of the field of view. The field of view is 2 mm along the horizontal direction. How many milliseconds does it take for the laser beam to pass the field of view?

Timing scheme and beamline control

Data processing and management

- The amount of data is big
- Fast storage
- Fast transfer
- Fast processing

Outline

- Introduction to fast X-ray imaging and diffraction
- Fast X-ray imaging system
- Fast X-ray diffraction system
- Revealing dynamics of additive manufacturing process by fast X-ray imaging and diffraction
- Approaches to mitigate/eliminate defects in additive manufacturing

X-ray imaging techniques

Given Scanning probe microscopy

Coherent imaging

- Fluorescence contrast
- Absorption contrast
- Absorption fine structure contrast
- Scattering contrast
- Diffraction contrast
- Computed tomography (3D)
- Ptychography
- Coherent diffractive imaging

Propagation-based full-field imaging

- Absorption contrast
- Phase contrast imaging
- Projection microscopy
- Transmission x-ray microscopy
- Diffraction contrast
- Computed tomography (3D)

Spatial resolution: probe size

Spatial resolution: q range

Spatial resolution: detection pixel size

High-speed X-ray image detection system

32-ID

Scintillator-couple optical detection

- High spatial resolution: imaging sensor pixel size, magnification by the lens
- High temporal resolution: delay time of scintillator, frame rate and exposure time of camera, x-ray pulse structure

High-speed X-ray image detection system

32-ID

□ X-ray beam size: 2 mm x 2 mm

Camera sensor:

- CMOS: 20 μm/pixel, 1024 x 1024, image size reduces as frame rate increases
- Hybrid CMOS (with on-pixel storage): 30 μ m/pixel, 400 x 250, image size remains the same
- Objective lens: 2x, 5x, 10x, 20x
- □ Scintillator light emission: visible light (wavelength: 400~700 nm)

32-ID-B experimental hutch

Outline

- Introduction to fast X-ray imaging and diffraction
- Fast X-ray imaging system
- Fast X-ray diffraction system
- Revealing dynamics of additive manufacturing process by fast X-ray imaging and diffraction
- Approaches to mitigate/eliminate defects in additive manufacturing

Fast X-ray diffraction at 32-ID

Intensifier: LaVision IRO, Quantum Leap
 Camera: Photron SA-Z, Shimadzu HPV-X2

□ Scintillator: Lu_{1.8}Y_{0.2}SiO₅:Ce (LYSO)

- Thickness: 300 μm
- Diameter: 65 mm
- Al front coating

- Camera: Photron SA-Z
- Intensifier trigger: multiple
- Pixels: 1024 x 1024 (60~70 µm/pixel)
- Min exposure: 100 ps
- Max frame rate: 200 kHz
- Fast dynamics spanning 10s' ms

- Camera: Shimadzu HPV-X2
- Intensifier trigger: single
- Pixels: 400 x 250 (60~70 µm/pixel)
- Min exposure: 100 ps
- Max frame rate: 10 MHz
- Ultrafast dynamics spanning 10s' µs

Pink beam diffraction at 32-ID

□ Phase transformation of Ti-6AI-4V

 α -Ti \rightarrow melting $\rightarrow \beta$ -Ti with coarse grains $\rightarrow \alpha$ -Ti with fine grains

32-ID source

- U18 pink: ~24 keV (1st)
- Bandwidth: ~5%

Detector

• Scintillator + intensifier + optical CMOS camera

Scanning laser mode

Spot welding mode

Frame rate: 20,000 Exposure: 1 μs

C. Zhao, et al., Scientific Reports, 7, (2017) 3602

Frame rate: 100,000 fps Exposure: 5 μs X-ray beam size: H100 x V60 μm²

Mono beam diffraction at 1-ID

(with Andrew Chuang, APS)

□ 1-ID source

- Superconducting undulator
- Mono: E = 55.6 keV

Detector

• PILATUS3X 2M CdTe

Frame rate: 250 fps Exposure: 1 ms

Comparison of diffraction data

- X-ray energy: mid-energy pink beam
- Detector: small indirect detection
- Frame rate: 100s' kHz
- Exposure time: microsecond
- Detector dynamic range: low
- S/N: low

Fast, but limited detection

- X-ray energy: high-energy mono beam
- Detector: large direct detection
- Frame rate: 100s Hz
- Exposure time: millisecond
- Detector dynamic range: high
- S/N: high

Slow, but high resolution

Outline

- Introduction to fast X-ray imaging and diffraction
- Fast X-ray imaging system
- Fast X-ray diffraction system
- Revealing dynamics of additive manufacturing process by fast X-ray imaging and diffraction
- Approaches to mitigate/eliminate defects in additive manufacturing

What is additive manufacturing

ASTM F2792 – 12a: Additive manufacturing (AM), n—a process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing methodologies. Synonyms: additive fabrication, additive processes, additive techniques, additive layer manufacturing, layer manufacturing, and freeform fabrication.

GE Additive

Laser powder bed fusion (LPBF) additive manufacturing (AM) process

Advantages

- ✓ Complex geometry and functionality
- ✓ Design freedom
- ✓ Faster time to market
- ✓ Part count and interfaces reduction

Challenges

- ✓ Hard to predict
- ✓ Containing many uncertainties
- ✓ Low fatigue life in AM parts
- ✓ Lack of qualification and certification

GE Additive

Laser powder bed fusion (LPBF) AM process

- Very fast (microseconds)
- Highly localized (100s of µm)
- Opacity of metals to visible light
- Harsh environments (high temperature, spatter)

Questions:

- What happens during laser-material interaction?
- What is the underlying mechanism?

Quantitatively reveal the dynamics and mechanisms of LPBF process

Laser scan speed: about m/s, wiper speed: 100s mm/s

High-speed high-energy synchrotron x-ray imaging and diffraction

APS 32-ID-B, X-ray energy: 24 keV, resolution: up to 1 μ m, frame rate: up to 6.5 MHz, exposure time: down to100 ps

In-situ x-ray imaging/diffraction system

Cang. Zhao et al., Real-time monitoring of laser powder bed fusion process using high-speed Xray imaging and diffraction, Scientific Reports, 7, 3602 (2017).

Quantitatively reveal the dynamics and mechanisms of LPBF process

Laser scan speed: about m/s, wiper speed: 100s mm/s

Powder spreading

Dynamics of powder spreading

- Reveal powder spreading mechanisms
- Establish the correlation between powder bed quality and powder characteristics, recoater material and geometry, and spreading parameter

Luis I. Escano et al., Scientific Reports, 8, 15079 (2018); Review of Scientific Instruments 93, 043707 (2022)

Quantitatively reveal the dynamics and mechanisms of LPBF process

Laser scan speed: about m/s, wiper speed: 100s mm/s

Powder spattering dynamics during laser scan

Spatter induced defects

SEM images showing spatter-induced surface defects in an AlSi10Mg Sample.

Optical image showing lack of fusion pore in an AM AISi10Mg.

- Zachary A. Young et al., Types of spatter and their features and formation mechanisms in laser powder bed fusion additive manufacturing process, *Additive Manufacturing*, 36, 101438 (2020).
- Qilin Guo et al., Transient dynamics of powder spattering in laser powder bed fusion additive manufacturing
 process revealed by in-situ high-speed high-energy x-ray imaging, Acta Materialia, 151, 169 (2018).

Quantitatively reveal the dynamics and mechanisms of LPBF process

Laser scan speed: about m/s, wiper speed: 100s mm/s

Melt pool evolution

Processed

Original

Melt pool variation under constant input energy density (IED)

IED=p/(vd), p, laser power, v, scan speed, d, laser diameter

Up to two orders of magnitude change of melt pool volume

Qilin Guo et al., *Additive Manufacturing*, 28, 600-609 (2019).

Dynamics of melt flow

Full-field melt flow mapping approach to reveal the location-specific flow patterns in different regions of the melt pool, and to quantify the speeds of various types of flow.

Two-view observation to get 3D information

Melt flow in keyhole mode melting

• Longitudinal view

• Transverse view

Qilin Guo et al., In-situ full-field mapping of melt flow dynamics in laser metal additive manufacturing, *Additive Manufacturing*, 31, 100939 (2020).

Melt flow instabilities

- Type I—Powder/droplet impact induced instability
- **Type II**—Significant keyhole oscillation induced instability
- **Type III**—Melting-mode switching induced instability

Qilin Guo et al., Revealing melt flow instabilities in laser powder bed fusion additive manufacturing of aluminum alloy via in-situ high-speed X-ray imaging, *International Journal of Machine Tools and Manufacture*, 175, 103861 (2022).

Quantitatively reveal the dynamics and mechanisms of LPBF process

Laser scan speed: about m/s, wiper speed: 100s mm/s

Dynamics of pore formation

Transfer from feedstock powders

Depression zone instability

Surface fluctuation

Crack induced pore

S. Mohammad. H. Hojjatzadeh et al., Direct observation of pore formation mechanisms during LPBF additive manufacturing process and high energy density laser welding, *International Journal of Machine Tools and Manufacture*, 153, 103555 (2020).

Dynamics of pore evolution

To probe pore motion in every location in the melt pool, AlSi10Mg plate samples, with uniformly dispersed pores (diameters of 10 to 60 μ m), were used for this study.

Dynamics of pore evolution

Pore motion patterns

Driving forces for pore motion and elimination

Mechanisms of pore motion and elimination

The competition between the melt flow induced drag force and the temperature gradient induced thermocapillary force determines pore moving behavior in the melt pool.

S. Mohammad. H. Hojjatzadeh et al., Pore elimination mechanisms during 3D printing of metals, *Nature* Communications, 10, 3088 (2019).

Quantitatively reveal the dynamics and mechanisms of LPBF process

Laser scan speed: about m/s, wiper speed: 100s mm/s

Dynamics of solidification

Cracks initiate and propagate during solidification

Calculation of solidification rate

 $V_i = \frac{d_i}{\left(t_i - t_{i-1}\right)}$

 V_i is the solidification rate of interface *i*, d_i is the distance the solidification front travels from time t_{i-1} to time t_i . t_i and t_{i-1} are times corresponding to interface *i* and interface *i*-1, respectively.

Solidification rate evolution

M. Michael Coday et al., Undercooling in laser powder bed fusion metal additive manufacturing, submitted to *Acta Materialia*.

Transient phase transformation

304L stainless steel, 312 W, 0.4 m/s

Quantitative phase evolution dynamics

In-situ high-energy high-resolution X-ray diffraction

Frame rate: 250 Hz

Types of phases, relative amount, lattice parameter change (to estimate stress, temperature)

Phase evolution in 17-4 PH stainless steel

Qilin Guo et al., Phase transformation dynamics guided alloy development for additive manufacturing, *Additive Manufacturing*, in press, 103068 (2022). ⁵⁹

Outline

- Introduction to fast X-ray imaging and diffraction
- Fast X-ray imaging system
- Fast X-ray diffraction system
- Revealing dynamics of additive manufacturing process by fast X-ray imaging and diffraction
- Approaches to mitigate/eliminate defects in additive manufacturing

Mitigate spatter induced defects

The stochastic formation of large spatter (spatter larger than layer thickness) is a major cause of unpredictable defect formation in LPBF process and a big challenge for quality control.

Elimination of large spatter by using nanoparticles

Defect lean sample

Nanoparticle-enabled control of molten pool fluctuation

Eliminate liquid breakup induced large spatters

Nanoparticle-enabled control of liquid droplet coalescence

Eliminate liquid droplet colliding induced large spatters

Minglei Qu et al., Controlling process instability for defect lean metal additive manufacturing, *Nature* Communications, 13, 1079 (2022).

Minglei Qu et al., Mitigating keyhole pore formation by nanoparticles during laser powder bed fusion additive manufacturing, Additive Manufacturing Letters, 3, 100068 (2022).

Minglei Qu et al., Controlling melt flow by nanoparticles to eliminate surface wave induced surface fluctuation, Additive Manufacturing, in press, 103081 (2022).

Pore elimination by thermocapillary force

Eliminate pore in feedstock powders

Eliminate pore in previous built layers

Pores can be eliminated by thermocapillary force under proper processing conditions (large high temperature gradient region).

Development of alloy for AM

17-4 with full martensite phase

Consistent phase in a wide range of cooling rate

68

10² °C/s

Microstructure and property of printed sample

- Fully martensitic structure in as-printed part
- High yield strength, comparable to H900 17-4
 (precipitation-hardened)

Qilin Guo et al., Phase transformation dynamics guided alloy development for additive manufacturing, *Additive Manufacturing*, in press, 103068 (2022).

Acknowledgements

Students/collaborators:

UW-Madison/Missouri S&T: Qilin Guo, Lianghua Xiong, Luis I. Escano, Zachary Young, S. Mohammad H. Hojjatzadeh, Minglei Qu, Meelap M. Coday, Joseph Louis Volpe, Raghavender Reddy Jakka, Khalid Solangi, Ali Nabaa, Junye Huang, Jiandong Yuan, William Dong, Xinhang Zhang **Argonne National Laboratory:** Tao Sun, Andrew Chuang, Samuel J Clark, Kamel Fezzaa, Peter Kenesei **National Institute of Standards and Technology**: Fan Zhang **University of Virginia: Tao Sun** Honeywell Federal Manufacturing & Technologies: Wes Everhart, Ben Brown **National University of Singapore:** Wentao Yan **University of Michigan**: Wenda Tan **Sponsors**: **National Science Foundation** Honeywell Federal Manufacturing & Technologies The Boeing Company **Department of Energy Department of Commerce**

Wisconsin Alumni Research Foundation

Feedback

Thank you!

Contact information: Lianyi Chen University of Wisconsin-Madison Email: lianyi.chen@wisc.edu Phone: 608-890-0664 NXS Lecture - Fast X-ray imaging and diffraction - Lianyi Chen

https://forms.office.com/g/9RK5XQhEKK