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Nobel Prizes for Research
with X-Rays

1901 W. C. Rontgen in Physics for the discovery of x-rays.
1914 M. von Laue in Physics for x-ray diffraction from crystals.

1915 W. H. Bragg and W. L. Bragg in Physics for crystal structure determlnatlo". -

1917 C. G. Barkla in Physics for characteristic radiation of elements.

1924 K. M. G. Siegbahn in Physics for x-ray spectroscopy.

1927 A. H. Compton in Physics for scattering of x-rays by electrons.

1936 P. Debye in Chemistry for diffraction of x-rays and electrons in gases.

1962 M. Perutz and J. Kendrew in Chemistry for the structure of hemoglobin.

1962 J. Watson, M. Wilkins, and F. Crick in Medicine for the structure of DNA.

1979 A. McLeod Cormack and G. Newbold Hounsfield in Medicine for computed axial
tomography.

1981 K. M. Siegbahn in Physics for high resolution electron spectroscopy.

1985 H. Hauptman and J. Karle in Chemistry for direct methods to determine
x-ray structures.

1988 J. Deisenhofer, R. Huber, and H. Michel in Chemistry for the structures
of proteins that are crucial to photosynthesis.

2006 R. Kornberg in Chemistry for studies of the molecular basis of eukaryotic
transcription.

2009 V.Ramakrishnan, T.A.Steitz and A.E.Yonath for studies of the structure and
function of the ribosome.



Synchrotron research on proteins has led to major
advances in drugs to battle infection, HIV, cancer
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Designing antibiotics -
difference between bacterial and eukaryotic ribosomes is
one amine group in the 2.5MD ribosome

oI =OMe Erythromycin — a macrolide antibiotic that blocks protein synthesis
by binding to bacterial ribosomes but not to eukaryotic ribosomes

www.molgen.mpg.de




Functional domain dynamics in proteins

) JGLICH
NSE FRET NMR
0.5-50 nm length scale fixed defined position
ps - Us time scale > us timescale pPsS - ms timescale
orientational average , small proteins

g~21/length

phosphoglycerate kinase



Some Neutron History

1932 — Chadwick discovers the neutron 'gmf wats
1934 — thermalisation (Fermi) N
1936 — scattering theory (Breit, Wigner) i
1936 — wave interference (Mitchell, Powers) $ o
1939 — fission / X
slao—
3
1945 — diffraction (Shull, Wollan), reflection, refraction
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1948 — coherent & incoherent scattering (Shull, Wollan)
1948 — spallation
1949 — structure of AFM (Shull)

1951 — polarized neutrons (Shull & Wollan)
1955 — three axis spectrometer (Brockhouse)
1958 — rotons in helium (Palevsky, Otnes, Larsson)

1962 — Kohn anomalies
1960 — 79 — soft phonons & structural phase transitions
1969 — 79 — scaling and universality

1972 — conformation of polymers

1994 — Nobel Prize for Shull and Brockhouse CIiff Shull (1915 — 2001)



First Study of an Antiferromagnetic Structure

Antiferromagnetic Structure of MnO
(Shull and Wollan Phys. Rev. 83, 333 (1951)



Nobel Prize in Physics, 1994

~ Awarded for “pioneering contributions to the development
" of neutron scattering techniques for studies of condensed matter”

Bertram N. Brockhouse Clifford G. Shull

Development of ‘Deve'lopntof the -
neutron spectroscopy neutron diffraction technique



The 1994 Nobel Prize in Physics — Shull & Brockhouse

Neutrons show where the atoms are....
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Why do Neutron Scattering?

- To determine the positions and motions of atoms in condensed matter

1994 Nobel Prize to Shull and Brockhouse cited these areas
(see http://www.nobel.se/physics/educational/poster/1994/neutrons.html)

* Neutron advantages:

Wavelength comparable with interatomic spacings

Kinetic energy comparable with that of atoms 1n a solid

Penetrating => bulk properties are measured & sample can be contained

Weak interaction with matter aids interpretation of scattering data

Isotopic sensitivity allows contrast variation

Neutron magnetic moment couples to B => neutron “sees’ unpaired electron spins

« Neutron Disadvantages

Neutron sources are weak => low signals, need for large samples etc
Some elements (e.g. Cd, B, Gd) absorb strongly
Kinematic restrictions (can’ t access all energy & momentum transfers)



Historic accomplishments (Neutrons)

e Antiferromagnetic Structures
*Rare earth spirals and other spin structures
*Spin wave dispersion

*Our whole understanding of the details of exchange
interactions in solids

*Magnetism and Superconductivity

*Phonon dispersion curves 1n crystals; quantum crystals and
anharmonicity

*Crystal fields

*Excitations in normal liquids
*Rotons 1n superfluid helium
*Condensate fraction in helium



Recent Applications of Neutrons

Quantum Phase Transitions and Critical points

Magnetic order and magnetic fluctuations in the high-Tc
cuprates

Gaps and low-lying excitations (including phonons) in
High-Tc¢

Magnetic Order and spin fluctuations in highly-correlated
systems

Manganites
Magnetic nanodot/antidot arrays
Exchange bias



Recent Applications of Neutrons (contd.)

* Proton motion in carbon nanotubes
e Protein dynamics
e (Glass transition in polymer films

* Protonation states in biological macromolecules from
nuclear density maps

e Studies of protein diffusive motion in hydrated enzymes
* Boson peaks in glasses
e Phase diagrams of surfactants

e Lipid membranes



Neutron Applications in Soft Matter and
Materials

Scaling Theory of polymers

Reptation in Polymers

Alpha and beta relaxation in glasses
Structures of surfactants and membranes
Structure of Ribozome

Excitations and Phase transitions in confined Systems
(phase separation in Vycor glass; Ripplons in superfluid He
films, etc.)

Momentum Distributions
Materials — precipitates, steels, cement, etc.



Science with X-Rays

Diffraction and crystal structures
Structure Factors of liquids and glasses
Surface and Interface structures
Structures of Thin Films

ARPES

EXAFS, XANES

Studies of Magnetism with resonant XMS
Inelastic X-ray scattering: phonons, electronic excitations
X-ray Photon Correlation Spectroscopy
Microscopy

Imaging/Tomography



Applications of X-rays to Surface/
Interface Scattering

study the morphology of surface and interface roughness
wetting films
film growth exponents

capillary waves on liquid surfaces (polymers, microemulsions, liquid
metals, etc.)

islands on block copolymer films

pitting corrosion

magnetic roughness

study the morphology of magnetic domains in magnetic films.
Nanodot arrays

Tribology, Adhesion, Electrodeposition



S.R. and neutron based research can help us to
understand:

e How the constituent molecules self-assemble to form
nanoparticles.

* How these self-organize into assemblies
 How structure and dynamics lead to function
* How emergent or collective properties arise



Interaction Mechanisms

Nuclear
/ \_/ \.\/Scattenng
. Electron—l ° ! o

Nuclear
~ Interaction

Magnetic
Scattenng

Surface |

Neutron

Neutron

X Ray

* Neutrons interact with atomic nuclei via very short range (~fm) forces.
 Neutrons interact with unpaired electrons via magnetic dipole interaction.
» X-rays interact with electrons via an electromagnetic interaction



Thermal Neutrons, 8 keV X-Rays & Low Energy
Electrons:- Penetration in Matter
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Types of Interaction

- Neutrons interacting with nuclei

— Absorption by nuclei — cross section (1.e. absorption probability) for thermal
neutrons usually ~1/v, resonances at high energy (> keV)

— Coherent scattering — scattering from different nuclei add in phase

— Incoherent scattering — random phases between scattering from different nuclei

- Neutrons interacting with magnetic fields

— Magnetic dipolar interaction — scattering from magnetic field due to unpaired
electrons — coherent

- X-rays interacting with electrons

— Photoelectric absorption — x-rays kicks electron from shell to continuum
» Leads to fluorescent X-ray emission when hole in shell is filled from outer shell

* Goes as 1/E3 but with sharp steps at shell energies when new channel opens
— Thomson scattering — elastic and coherent

— Compton scattering — inelastic and incoherent



TYPE
OF RADIATION

Radiation Sources
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Neutron and X-Ray Scattering:
Structure from Angstroms to Microns!
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Comparison of Structural Probes

Crystallography

Atomic Structures

Microstructure

Proteins
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Note that scattering methods
provide statistically averaged
information on structure
rather than real-space pictures
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Figure 2. (a) Optical micrograph of PS-200 spin cast at 750
rpm using THF (P, = 0.215 bar). (b) One-dimensional Fourier
transform of central (isotropic) region of optical micrograph.

Macromolecules, 34, 4669 (2001)



Neutron & X-ray Scattering Complement
Other Techniques in Length Scale....
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E / meV

......and Time Scale
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The Neutron has Both Particle-Like and Wave-Like Properties

« Mass: m,=1.675x 10%” kg

« Charge = 0; Spin = 2

- Magnetic dipole moment: u, =-1.913 uy

» Nuclear magneton: uy = eh/4xm = 5.051 x 107 J T

- Velocity (v), kinetic energy (E), wavevector (k), wavelength (\),
temperature (T).

« E=mv2 =kgT = (hk/2n)22m.; k = 2 7/A = m_v/(h/2x)

Energy (meV) Temp (K) Wavelength (nm)
Cold 0.1-10 1-120 04-3
Thermal 5-100 60 - 1000 0.1-04
Hot 100 - 500 1000 -6000 0.04 - 0.1

A (nm) =395.6 /v (m/s)
E (meV) =0.02072 k (k in nm™)



X-Rays also have Wave-Like and Particle-Like
Properties

E=hv=hc/A=(h/2x)c(2m/A)=hck = pc

Charge = 0; magnetic moment = 0O; spin = 1

E (keV) A(A)
0.8 15.0
8.0 1.5
40.0 0.3

100.0 0.125

Typical interatomic distance in a crystal is 3.5 A
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Brightness & Fluxes for Neutron &
X-Ray Sources

Brightness dE/E Divergence Flux

(s"m?ster’) (%) (mrad®) (s"m?)
Neutrons 10" 2 10 x 10 10"
Rotating 10" 3 0.5 x 10 5x10"°
Anode
Bending 10%* 0.01 0.1x5 5x10"
Magnet
Wiggler 10%° 0.01 0.1 x 1 10"
Undulator 10°° 0.01 0.01 x 0.1 10%*
(APS)

Flux = brightness * divergence; brilliance = brightness / energy bandwidth



Why
Synchrotron-
radiation ?
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Advantages & Disadvantages of Neutrons

- Advantages <
— A similar to interatomic spacings
— Penetrates bulk matter
— Strong contrast possible
— Energy similar to that of elementary excitations (phonons, magnons etc)
— Scattering strongly by magnetic fields
— Data interpretation 1s direct

- Disadvantages ::
— Low brilliance of neutron sources
— Some elements absorb neutrons strongly
— Kinematic restrictions on Q for large energy transfers
— Difficult to study excitations at high (eV) energies
— Provides statistical averages rather than real space pictures



Advantages and Disadvantages of X-Rays

- Advantages <
— A similar to interatomic spacings
— High brilliance x-ray sources (coherence, small beams etc)
— No kinematic restrictions (Q and E not coupled)
— No restriction on energy transfer that can be studied

- Disadvantages ~
— Strong absorption of low energy photons
— Contrast issues (low contrast for different hydrocarbons, scattering ~ Z?)
— Radiation damage to samples

— Magnetic scattering not always easy to observe



A Typical Scattering Experiment

Kk, R
Incident Radiation Q 26
Wavevector = /gl (or EO) K Detector
k|=2m/A
Energy = £,
Polarization = p, Scattered Radiation

Wavevector = k ; (or l?)

S Energy = £,
Wavevector Transfer, Q =k, -k,

Energy Transfer, AE = hv=lw=E, - E,
Forx-rays:AE << E, or E; s0(Q = 2k;sin0

Polarization = p,

Polarization, p, = p,

Notice that the finite size of the detector and sample imply uncertainty
in the direction of the wavevectors



Cross Sections

Direction

0.¢
ds /

dQ

Incident - ik

0

———— 2 HIAE
Target//

® = number of incident neutrons per cm” per second

1

e

neutrons

o = total number of neutrons scattered per second / ®

do number of neutrons scattered per second into d€2

dQ2 d dQ
d’o _ number of neutrons scattered per second into dQ2 & dE
dQdE ® dQ dE

cross section

The effective area presented by a nucleus
to an incident neutron. One unit for cross
section is the barn, as in “can’t hit the side of
a barn!”

o measured in barns:
1 barn = 1024 cm?

Attenuation = exp(-Not)
N = # of atoms/unit volume
t = thickness



Neutron Scattering by a Single (fixed) Nucleus

* range of nuclear force (~ 1fm)
1s << neutron wavelength so
. . 11 . . »”
| k scattering is = point-like
AT A" seattored Ciroulr * energy of neutron is too small
W b ,ikr
\ \— e Te to change energy of nucleus &
> X neutron cannot transfer KE to a
fixed nucleus => scattering is
elastic
. Scattering Center . .
Incident atr=0 « we consider only scattering far
Plane Wave e
from nuclear resonances where
neutron absorption is negligible

P <

'
\
‘v‘ﬂ)‘o-.

/
.

If v 1s the velocity of the neutron (same before and after scattering), the number of neutrons

passing through an area dS per second after scattering is:
vdSly . [ =vdSb¥r? =v b’ dQ
Since the number of incident neutrons passing through unit areasis: ® =v

do vbdQ
0 pia P 30 Fucu

=V

2
l/jincident

= 4nb’ (note units)



Intrinsic k,
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Intrinsic Cross Section: Neutrons
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Intrinsic Cross Section:  (»)
X-Rays
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Case (A): E_=E """
e
E_(R,t) = x(t—-R/c
wa(Ro1) Ame,c’R ( )

X

#(t-R/c) = -—a(w)E, e cosy
m

Erad(R9t) eikR
= —7, 0\
7 s (w) R

1mn

COSY)

rad

Thomson Scattering Length Y v
of the Electron // // .

(classical electron radius) :
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Single (free) Electron Scattering (cont d)

Measured intensity (1.e. number of X - ray photons) a energy/sec
Energy per unit area of beam o E” ;

"RPAQ

A

do number of xraysscattered per sec in AQ2

E

rad

E

_ intensity measured in detector I,

incident intensity I,

in

differential cross section =

Q (number of incident xrays per area) * AQ2

do i ‘R

SC

Erad

= = = 17 coS”
aQ I,/ HAQ g [ ° v

mn

Note that this form is for an incident beam polarized along x in
part (A) of the previous viewgraph. If incident beam is polarized
perpendicular to the scattering plane (Case B), cos#y -> 1.

For an unpolarized beam, averaging -> (1+ cos?)/2



Intrinsic Cross (RO _ ‘a(w)‘ payy < € i
Section: X-Rays L, R’
do /dO’) 1 5 ) >
bl — | == +cos"y)r, |a(w)
(dQ )o \de2), 2 ‘ | >
a(w) = ——

2 .
W —-w —-1nw

?
‘ Resonance
: Scattering : :
Rayleigh ~ Thomson Scattering
Scattering | ©® = (W,
4 do |
o w>>w, = |—| =rP
dQ |,
w
a)l'




Magnetic Scattering of X-Rays

- If we include the magnetic field of the x-ray wave and the spin
of the electron we get:

Terms in cross section that are sensitive to spin and orbital magnetic moments
of the electrons

Very weak: scattering amplitude for magnetic x-ray scattering divided by the
amplitude for charge scattering = (hv/mc?) ~ 0.01 for 10 keV x-rays

=> Bragg scattering intensity down by ~ 10*

Magnetic scattering can be much enhanced at resonances i.e. when the x-ray
energy is close to atomic absorption edges.
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Adding up phases at the detector of the
wavelets scattered from all the
scattering

centers 1n the sample: \




Adding up Neutrons Scattered by Many Nuclei

At a scattering center located at R, the incident waveis e to-Ry

i ko R -b, iR
so the scattered wave at 7 isy__, = E ek i k=R
R,
- 2
do vdS as |, i; | . .
' V] =—|he*” e o~ (using defn. from earlier VG)

TAQ T vdQ dQ |’

If we measure far enough away so that r >> R.we can use dQ2 = dS/r” to get

dU Ebb z(kok)(R _R)) Ebb —zQ(R -R})

|

where the wavevector transfer Qisdefined by O = k'-

do i(ky—k").(R.-R,) 1-cos”26
Forx-rays:—=r e’ P
S OE 2

1,]

where R, are electron positions
Note: we have assumed the scattering centers don’ t move



The Scattering Triangle

- The wavevector transfer, variously denoted Q or q, is

defined by:

- The scattering triangle defines the vector relationship

between these quantities




Coherent and Incoherent Scattering of Neutrons

The scattering length, b, , depends on the nuclear isotope, spin relative to the
neutron & nuclear eigenstate. For a single nucleus:

bb. =(b) +(b)(3b, + Ib,) + 5h,0b,

but <§b> =0 and <5bl.5bj> vanishes unless1 = j
(92)= {6~ 0)F - () -0

. do - <b>2ze_ig(ﬁi-ﬁj) N (<b2> ~ <b>2)N

b, = (b) + b, where &b, averages to zero

dg i,j
Coherent Scattering Incoherent Scattering
(scattering depends on the (scattering is uniform in all directions)

direction & magnitude of Q)

Note: N = number of atoms in scattering system



Nuclear Spin Incoherent Scattering

Consider a single 1sotope with spin /. The spin of the nucleus - neutron
systemcanbe (/ +1/2)or (1 -1/2).

The number of states withspin (/ +1/2)1s2(/ +1/2)+1=21+2

The number of states withspin (/ —=1/2)1s2(/ -1/2)+1=21

If the neutrons and the nuclear spins are unpolarized, each spin state has

the same a priori probability.
The frequency of occurence of b* state1s 7 = (21 + 2)/(41 + 2)

The frequency of occurence of b~ stateis f~ = (2)/(41 + 2)

Thus <b> = ﬁ[([ +1)b" + [b'] and <b2> = ﬁ[(f +1)(b")" + [(b_)z]



Values of and
Nuclide | oo Oinc | Nuclide | ogop Oinc
1H 1.8 80.2 V 0.02 5.0
2H 5.6 2.0 Fe 11.5 0.4
C 5.6 0.0 Co 1.0 5.2
4.2 0.0 Cu 7.5 0.5
Al 1.5 0.0 36Ar 24.9 0.0

« Difference between H and D used in experiments with soft matter (contrast variation)
* Al used for windows
 V used for sample containers in diffraction experiments and as calibration for energy
resolution
* Fe and Co have nuclear cross sections similar to the values of their magnetic cross sections
* Find scattering cross sections at the NIST web site at:
http://webster.ncnr.nist.gov/resources/n-lengths/



Coherent Elastic Scattering measures the Structure
Factor S(Q) i.e. correlations of atomic positions

a’a_

- . ~ | _iO(R-R,
—=(b 2N S for an assembly of similar atoms where S =— g R
dg < > (Q) y (Q) N <E ensemble

o

Now Ee"@'ﬁ" = f dr.e07 Eé(? -R)= f dr.e"@7 p () where py is the nuclear number density

)
LI S e o m\ L e OR) ey o m B

or S(Q)= Nfd’” dr.e™ )<ION(r)pN(r )> = Ndefdre QR<10N(r)pN(r _R)>

ie S(O) =1+ fdﬁ.{g(é) _pteOR

S0 S(Q) = %<Ud?.e"@'? 0, (F)

where | g(R) = E <§(ﬁ — Ei + ﬁ0)> isa function of R only.

10

g(R) 1s known as the static pair correlation function. It gives the probability that there is an
atom, 1, at distance R from the origin of a coordinate system, given that there is also a
(different) atom at the origin of the coordinate system at the same instant in time.



S(x)

S(Q) and g(r) for Simple Liquids

Note that S(Q) and g(r)/p both tend to unity at large values of their arguments
The peaks in g(r) represent atoms in “coordination shells”
g(r) is expected to be zero for r < particle diameter — ripples are truncation

errors from Fourier transform of S(Q)

3

Fig. 5.1 The structure factor (k) for **Ar at 85 K. The curve through the
experimental points is obtained from a molecular dynamics calculation of
Verlet based on a Lennard-Jones potential. (After Yarnell et al., 1973.)

T
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T

B\ )P

Fig. 5.2 The pair-distribution function g(r) obtained from the experimental

results in Fig. 5.1. The mean number density is p =2.13 X 10°® atoms m™>.
(After Yarnell et al., 1973.)
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X-ray Scattering from an Atom

- We have to add up the Thomson scattering for all electrons

In the atom. ]
-1 (Q)=-n[p()edF  f(Q=0)=Z [(Q—>)=0

- f0is called the atomic form factor for a free electron
* We expect electrons that are more tightly bound to be able

to respond less to the driving field. This will alter the real
part of the scattering length. In addition, we also expect a
forced electron to have a phase lag (c.f. forced oscillator)

f(O,0)= £ (0)+ f(w) +if" (w)

- f andf’ are known as dispersion corrections

Notice that we use b for neutrons and r,f(Q,w) for x-rays in
the scattering cross section



iG-7

Atomic Form Factor: /"(9) = [p(F)e  dV

10 Ot atom ]
7°(5) f(g=0)=Z

8 | f(@—=»)=0

6 | FI"™\_Ne Mg? \Si*

4 L

)L Atomic Form Factor with

Dispersion Corrections:
NG ho) = 11 @)+ [ () +if (he)

0 2 4 6 8 10

q (A”)

12



The Fermi Pseudo-Potential for Neutrons

——=——— Y W. . where the sumis over probabilities of all transitions

2

. 2
By Fermi's Golden Rule : E We o= 7” Pr.
k'indQ

N )
(RWIE) === oy LfV( )e' 7 gy

where o, i1s# of momentum states in d€2, per unit energy, for neutrons in state k'

Using standard "box normalization", the volume per k state is (277)° /Y where Y = box volume

271142 270 '
Final neutron energy is E'= Ik = dE'= Ik dk SO
m
0,.dE' = number of wavevector states in volume k'*dk'dQ = (2Y)3 k'dk'dQ
T
: number of wavevectorstates Y ' m
ie. o = —
dE' C@r) n
Further, @& =incident flux = density x velocity = %Ek Fermip 871d0p0tent1al
m
2 o 2
o, do _Ym 12w Y 4.m dQ‘ is UV(f)e' - so| V(7) =2 bs(r)
dQ k hdQ n 2x) h 27h




Use V(r) to Calculate the Refractive Index for Neutrons

27

m

The nucleus - neutron potential is given by :  V(7) = bo(r) for asingle nucleus.

2
So the average potential inside the mediumis: V = 27 0 where p = 1 Ebi
m volume <«

p 1s called the nuclear| Scattering Length Density (SLD) + used for SANS & reflectometry

272
The kinetic (and total) energy of neutron in vaccuum is £ = hz Ky
m
[ -
Inside the medium the total energy 1s 5 +V
m
2712 2712 2712 2
: : — 2
Conservation of energy gives Mk, = nk +V = nk + h o or k;—k’=4mpo
2m 2m 2m m

Since k/k, = n = refractive index (by definition), and p is very small (~10° A™) we get :
n=1-Xp/2x

Since generally n < 1, neutrons are externally reflected from most materials.




Why do we Care about the Refractive Index?

- When the wavevector transfer Q is small, the phase factors
In the cross section do not vary much from nucleus to
nucleus & we can use a continuum approximation

- We can use all of the apparatus of optics to calculate
effects such as:

External reflection from single surfaces (for example from guide surfaces)
External reflection from multilayer stacks (including supermirrors)
Focusing by (normally) concave lenses or Fresnel lenses

The phase change of the neutron wave through a material for applications
such as interferometry or phase radiography

Fresnel edge enhancement in radiography



Refractive Index for x-rays

n=1-0+if
0
2ﬂpaf2 Or 4 gl

2k
P, 1s the atomic number density; k 1s the x - ray wavevector

where O =

u 1s the absorption coefficient (i.e. intensity decreases as e™*)

The wave outside the medium is ¢ inside the medium it is "

Note the we can also write :

nE1_272p;’?> {00+ fvir} with /3=-l—2”;a’”0] I
2 2
so f"=- k p=- k “_ (K o, because u=p,0,
2710,.1; 2mp 1y |2k \ 4w,




Diffraction

« Neutron (or x-ray) diffraction is used to measure the differential cross
section, do/dQ in the static approximation i.e. integrated over k' — measures
G(r,0)

— Crystalline solids (elastic scattering — G(r,0))
 Unit cell size; crystal symmetry; atomic arrangement
and thermal motions (ellipsoids)

— Liquids and amorphous materials
— Large scale structures

- Depending on the scattering angle,
structure on different length scales, d,
IS measured:

27/ Q=d =A/2sin(f)

- For crystalline solids & liquids, use
wide angle diffraction. For large structures,
e.g. polymers, colloids, micelles, etc.
use small-angle scattering




The Kinematic Approximation

Note that the approximation we have just seen ignores
— Depletion of the incident beam by scattering or absorption
— Multiple scattering

l.e. energy is not conserved

This so-called “kinematic approximation” is OK for weak
scattering, very small crystals or “bad” crystals

It is usually used for interpreting diffraction experiments, though
“extinction corrections” are often needed with single crystals

— Ifit’ s not adequate, use dynamical theory

In addition, we have so-far ignored thermal motion of atoms



Diffraction by a Lattice of Atoms

S (Q) = ]1]<E g R )> with ﬁi =i +ii, wherei is the equilibrium position

of atomiandu, is any displacement (e.g. thermal) from the equilibrium position.

l,j

Ignoring thermal vibrations, S(Q) is only non - zero for Q's such that Q.(f - j)=2Mn.
In a Bravais lattice, we can write i = m, 4, + m,,a, + m,d, where d,,d,,d, are
the primitive translation vectors of the unit cell.

L 2. : .
Define a, = —a, A a, and cyclic permutations.

Vo
Then a, .d ; =270,

IfQ=G,, =hi +ki,+la, then O.(i - j)=2Mum.

So scattering from a (frozen) lattice only

unit cell

occurs when the scattering wavevector, Q, The repeating unit of a crystal.

1s equal to a reciprocal lattice vector, G, ;.




Direct and Reciprocal Lattices

In a Bravais lattice, we can write R; = m;a, + m,,a, + my;a; where a,,d,,a; are

the primitive translation vectors of the unit cell (see previous viewgraph).

Let's defi ok 2T .. ~ 27T .. ok
et'sdefinea, = —a, xa;; a, =—ayxa;; da,
Vo Vo

2T . .
=—qa Xd
1 X4

Vo

where ¥V, = a,.(a, xa;) = the volume of the unit cell.

The Zz; have the dimensions of (length)' and the property that a a =270;;,1.¢

perpendicular to the plane defined by a, and a; etc.

If we choose a vector G, definedby G,,, = ha, + ki, +ld; then G,.(R, —RJ-)

i.e| G, is normal to sets of planes of atoms spaced 27/ G,,, apart

Scattering from a lattice of atoms occurs only when O = G

The vectors G,,; define a lattice of points called the

. a is

=2Mr.

reciprocal lattice

Homework: verify that Bragg s (A= 2 d sin0) follows from the above

v

=



2D

3D

fee

2m/a
@ @ { { J L J
a’*
I 2m/a
a,*
a’*
Reciprocal

21
cos(30°) a

bcc

Reciprocal
Lattice:

V.=a,(a,xa;)

C

. 2T . L
Cll = 7612 X 613
C
e 20T . .
C
o« 20T . L
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Reciprocal Space — An Array of Points (hkl)
that is Precisely Related to the Crystal Lattice

Cnia = 2/ yg (hkl)=(260)

a* =2m(b x ¢)/V,, etc.

A single crystal has to be aligned precisely to record Bragg scattering



Notation

. éhkl Is called a reciprocal lattice vector (node denoted hkl)

 h, k and | are called Miller indices

(hkl) describes a set of planes perpendicular to G,
separated by 2n/G;

« {hkl} represents a set of symmetry-related lattice planes

- [hkl] describes a crystallographic direction

« <hkl> describes a set of symmetry equivalent crystallographic

directions



For Periodic Arrays of Nuclei, Coherent Scattering Is Reinforced Only in
Specific Directions Corresponding to the Bragg Condition:
A=2d, sin(0) or 2 k sin(0) = G,,, (where G, ,, = 2n/d, )

K
Q Reflected Beam
k

Incident Beam

Scattering Plane 1

Scattering Plane 2




Atomic Vibrations

The formalism on the previous slide works fine if the atoms are stationary:
in reality, they are not

~ 1 ~iQ(R,-R,)
S(O) = — 2 iR,
Remember that (9)) N< ) e >
b ensemble

We average over the (fluctuating) atomic positions by introducing a
probability that an atom will be at given position. Instead of the Fourier
Transform of § functions, this gives the FT of the d functions convolved
with a spread function. The result is that S(Q) is multiplied by the FT of the
spread function i.e. by exp- Q* <u2>/3 if we use a Gaussian spread function

Ll o A —AAARAAA]

Atomic vibrations cause a decrease in the intensity of Bragg scattering.
The “missing” scattering appears between Bragg peaks and results in

inelastic scattering



Diffraction from non-Bravais Crystals

R ) )

R e i ol

BN RN
N N M .
= -\ 1q°7 | iGR,
Froa@ =[S @7 | De
1=1 n=I
Unit Cell Structure Factor Lattice Sum

F..(q)



Key Points about Diffraction

A monochromatic (single A) neutron beam is diffracted by a single crystal
only if specific geometrical conditions are fulfilled

These conditions can be expressed in several ways:
— Laue’ s conditions: Qﬁl =h; Qéz = k; Q.Ez3 =1 with h, k, and 1 as integers
— Bragg's Law:2d,;, sinf = A
— Ewald’ s construction

see http://www.matter.org.uk/diffraction/geometry/default.htm

Diffraction tells us about:
— The dimensions of the unit cell

Incident
neutrons

— The symmetry of the crystal

— The positions of atoms within the unit cell Euald Sphere

— The extent of thermal vibrations of atoms

1n various directions
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Bragg Scattering from Crystals

Working through the math (see, for example, Squires' book), we find :

d T N\ 55 & 5
(d_g)Bragg ) N ;/: ; 5(Q - thl)‘Fhkl(Q)‘

where the unit - cell structure factor is given by
A 7 iQ.d _-W,
Fu(Q) = EbdeQ e
d

and 7, 1s the Debye - Waller factor that accounts for thermal motions of atoms

Using either single crystals or powders, neutron diffraction can be used to
measure F? (which is proportional to the intensity of a Bragg peak) for
various values of (hkl).

Direct Fourier inversion of diffraction data to yield crystal structures is not
possible because we only measure the magnitude of F, and not its phase =>
models must be fit to the data

Neutron powder diffraction has been particularly successful at determining
structures of new materials, e.g. high T_materials



Comparison of X-ray and Neutron Cross
Section for Crystal Diffraction

d (27)’ T - P
(d—g)Neutron =N ;/: ;5(Q_thl)‘Fhkl(Q)‘

where the unit - cell structure factor is given by
Fiu (Q) = El;de@je‘Wd
d

and IV, 1s the Debye - Waller factor that accounts for thermal motions of atoms
1+ cos” 260 N (2r)’
Vo

doy _
Q). . 2

where the unit - cell structure factor is given by

Fr (Q) = E Ja (Q,a))eié‘ge_Wd

360~ Gy )|Fu (O

hkl




The Structure Factor

The intensity of scattering at reciprocal lattice points is given by the
square of the structure factor F,(0) = Z b e0de i

Crystallography attempts to deduce atomic positions and thermal
motions from measurements of a large number of such “reflections’

— (Reciprocal) distance between diffraction “spots” => size of unit cell

— Systematic absences and symmetry of reciprocal lattices => crystal
symmetry (e.g. bcc h+k+1=2n)

— Intensities of “spots” => atomic positions

and thermal motions

Laue diffraction pattern
showing crystal symmetry

’

)



Resolution and Integrated Intensity

« Neutron beam is not perfectly collimated
or monochromatic

- At a CW source, measure intensities of
Bragg peaks either by rocking the crystal

through the Ewald sphere or scanning 260.
— Width of rocking curve reflects instrumental

resolution and (perhaps) crystallite size

 Integrated intensity of rocking curve is
proportional to structure factor.
Constant of proportionality depends on
resolution function and scan direction
— called the Lorentz factor




Useful Web Site

- The following site provides a tutorial on diffraction. It is a

good idea to go through them and try the examples.

* http://www.matter.org.uk/diffraction/introduction/default.ntm



(a) : (b)

If we could measure
the complex quantity
F,,; we could figure out
the positions of all
atoms. But we only
measure | F, ., [>. In
fact, we would be
better off 1f diffraction
measured phase of
scattering rather than

amplitude!
Unfortunately, nature
did not oblige us.
The Phase Problem TP

A graphic illustration of the phase problem: (a) and (b) are the
original images. (c) is the (Fourier) reconstruction which has the Fourier
phases of (a) and Fourier amplitudes of (b); (d) is the reconstruction with
the phases of (b) and the amplitudes of (a).

Picture by courtesy of D. Sivia



Object A Object B

Professor Sinha’s demonstration of the
“Phase Problem’ is much more memorable



Fourier Reconstruction with Fourier Reconstruction with
phases of object A and amplitudes phases of object B and amplitudes
of Object B of Object A

PHASE tells us where the different parts of the object are located!



Powder — A Polycrystalline Mass

All orientations of
crystallites possible

Typical Sample: 1cc powder of
10um crystallites - 10° particles

if 1lum crystallites - 1012 particles

Single crystal reciprocal lattice
- smeared into spherical shells



Powder Diffraction gives Scattering on

Debye-Scherrer Cones
(220)

Incident beam
X-rays or neutrons

(200)

Bragg s Law A = 2dsin0
Powder pattern — scan 20 or A



Typical SANS/SAXS Applications

- Biology
— Organization of biomolecular complexes in solution

— Conformation changes affecting function of proteins, enzymes, protein/DNA
complexes, membranes etc

— Mechanisms and pathways for protein folding and DNA supercoiling

* Polymers
— Conformation of polymer molecules in solution and in the bulk
— Structure of microphase separated block copolymers
— Factors affecting miscibility of polymer blends

* Chemistry

— Structure and interactions in colloid suspensions, microemeulsions,
surfactant phases etc

— Mechanisms of molecular self-assembly 1n solutions



Biological Applications of SANS

- Studying Biological Macromolecules in Solution

Proteins

Nucleic Acids

Protein-nucleic acid complexes
Multi-subunit protein complexes
Membranes and membrane components
Protein-lipid complexes

+ One of the issues with studying bio-molecules is that most
contain H which gives a large, constant background of
iIncoherent scattering. To avoid this:

Use D,0 instead of water as a fluid for suspension
May need to deuterate some molecular components



Instrumental Resolution for SANS/SAXS
2 2 2 2
Q=4—ﬂsin6’ = 5—Q2 = % o 28 82'56
A 0] A sin“ @

2 2
~ 5% and @ 1s small, so <(S—% > =0.0025 + <5i2>

0 0
For equal source - sample & sample - detector distances of L and equal

apertures at source and sample of h, 66,,,, = v5/12h/L.
The smallest value of € 1s determined by the direct beam size: 26,,;, ~1.54/L

For SANS, (/1)

rms

At this value of 8, angular resolution dominates and

0Q s ~ (00.1,./0 13 ) Qrin ~ OO0, dw/ A~ QRr/A)h/ L

The largest observable object is ~ 2/0Q ., ~ AL/ h.

This achievesa maximum of about 5 um at the ILL 40 m SANS instrument using
15 A neutrons.

Note that at the largest values of 4, set by the detector size and distance from the

sample, wavelength resolution dominates.



Remember — =42 h<UdF e 0Ty (7)

Scattering Length Density

)

What happens if Q is very small?
— The phase factor will not change significantly between neighboring atoms
— We can average the nuclear scattering potential over length scales ~25t/10Q
— This average is called the scattering length density and denoted o(7)

How do we calculate the SLD?
— Easiest method: go to www.ncnr.nist.gov/resources/sldcalc.html

By hand: let us calculate the scattering length density for quartz — S10,

Density is 2.66 gm.cm3; Molecular weight is 60.08 gm. mole!

Number of molecules per A3 = N = 10-24(2.66/60.08)*N,,, 4,4, = 0.0267 molecules per A3
SLD=3b/volume = N(bg, + 2b,) = 0.0267(4.15 + 11.6) 105 A2 =4.21 x10°6 A2

A uniform SLD causes scattering only at Q=0; variations in the SLD cause
scattering at finite values of Q



SLD Calculation

- www.ncnr.nist.gov/resources/sldcalc.html
*  Need to know chemical formula
and density

— * Compound

Enter
—* Density (g/cmA3)

Wavelength (A)

Not relevant for SLD

Neutron SLD

— > CuKa SLD

X-ray values
—» Mo Ka SLD

Background . Neutron Inc. XS
Neutron Abs. XS
Determine best sample thickness,

C6H12

0.86

Neutron 1/e length

-3.07E-7 (AA-2)

8.34E-6 +9.36E-9i (AA-,

8.33E-6 +2.08E-9i (AA-,

5.93; 33.4 (cmA-1)

0.0823 (cmA-1)

0.166 (cm)

Note units of the cross section — this 1s cross section per unit volume of sample



SANS Measures Particle Shapes and Inter-particle Correlations

do

1o =0 [ dr [drn, Fin (et

space space

(p-py) [d'xe?"

particle

= [ &R [d°R (n,(Ryn,(R))je"™ "

space space

orientation

dO' - |2 = iO.R
99 _(p-p 2 [FO[ V2N, [d*RG,(R).<>"
d<2

where G, 1s the particle - particle correlation function (the probability that there

isa particle at R if there's one at the origin) and ‘F (Q)‘2 is the particle form factor :

2

‘F(Q)‘ fd%ceéx

particle

P
orientation

These expressions are the same as those for nuclear scattering except for the addition
of a form factor that arises because the scattering is no longer from point-like particles



Scattering from Independent Particles

Scattered intensity per unit volume of sample = [/ (0) = id_a <U,0(r)elQ "dr

VdQ v

)

2
1 iOF 7— Vp I\U;ncez‘:lrti;:(ring ensity
10~ s, - ,00)V<V e dr> @ Q.

P particle
/ \ &\ homogeneous particle O

with scattering density, Pp
contrast factor

For identical particles

particle form factor [#©f

Note that /(0) = %(Pp - po)szz

Particle concentration ¢ = NV, /V and particle molecular weight M, = pV' N,

where p 1s the particle mass density and N ,is Avagadro's number

so 1(0)= M, (o, - 0,)° provides a way to find the particle molecular weight

PN,




Scattering for Spherical Particles

2

- |2 .
The particle form factor ‘F (Q)‘ = ba’?e’gr is determined by the particle shape.
vV

For a sphere of radius R, F(Q) only depends on the magnitude of Q :

Ji(QR) = V,atQ=0

7 (Q)=3V{sinQR—QRcosQR}_3VO

(OR)’ " OR

Thus, as Q — 0, the total scattering from an assembly of uncorrelated spherical
particles[i.e. when G(r) — 0(T)]is proportional to the square of the particle volume

times the number of particles.

For elliptical particles
replaceR by :

R — (a* sin*¥+b* cos” P)'"?
where 71s the angle between

the major axis (a) and Q




Radius of Gyration Is the Particle “Size” Usually
Deduced From SANS Measurements

If we measure 7 from the centroid of the particle and expand the exponential

in the definition of the form factor at small Q :

F(O) =fdl7'eiQ'F ~V, +W—%I(Q.?)2d3r+....
14 V

fcos Hsm@d@f r’d’r

=V, 1— 5 : +..[=V,
fsinﬁ.dﬁ fd
0

where r, is the radius of gyrationis 7, = f R*d’r/ f d’r. Ttisusually obtained from a fit

to SANS data at low Q (in the so- called Guinier region) or by plotting In(Intensity) v Q.
The slope of the data at the lowest values of Q is rgz/ 3. Itiseasily verified that the

expression for the form factor of a sphere is a special case of this general result.



Shape Determination for Dilute, Randomly
Oriented, Uniform Particles

2
N 2 i0F 5= (*.~i0F" =
=?(:0p_:00) fe drfe dr

Vb Vo

1Q) = (p, - po)*{| [0 d

Yy

1(0) = %(pp - po>2< fe@-<”'>d<f - f')Vp> =(p, - p0>2< fﬂé)e@ﬁdé>

Y Vp

sin Qr

1(Q) = (p, - py)*4m ff” y(r) O

where P(r) = 47r”y(r) is the probability of finding two points in the particle separated by r

If (Q) is measured over a wide enough Q range then the inverse
transform can be computed

P(r) =4y () = = [QI(Q)sin(r)d0
JU



P(r) for Simple Models
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Determining Particle Size From Dilute Suspensions

Particle size is usually deduced from dilute suspensions in which inter-particle
correlations are absent

In practice, instrumental resolution (finite beam coherence) will smear out
minima in the form factor

This effect can be accounted for if the spheres are mono-disperse

For poly-disperse particles, maximum entropy techniques have been used
successfully to obtain the distribution of particles sizes

5 I T = , —
o EXPERIMENT SMEARED BY lNSTRUMENTAL‘

RESOLUTION

4 [%%a, e DESMEARED CURVE

In I(Q)

(0] - 0.0t 0.02 0.03

4
Q= —"-sm{) (A1)
A

Fig. 4. Plot of In I(Q) vs Q for 3-98 vol.% monqdisperse PMMA-H
spheres (core C1) in D,O/H,O mixtures.



Correlations Can Be Measured in Concentrated Systems

- A series of experiments in the late 1980’ s by Hayter et al and Chen et al
produced accurate measurements of S(Q) for colloidal and micellar systems

- To alarge extent these data could be fit by S(Q) calculated from the mean

spherical model using a Yukawa potential to yield surface charge and screening
length

1.6 2.0
v
'é 4
& (o)
“
:E: 0.8 1.0
0
(9
=)
~N
o
T E 0.0
0.0 1.0 20
Q/nm1

Fig. 2. Observed (@) and calculated ( ) scattered inten-
sity I1(Q) as a function of momentum transfer Q for a charged
micellar  dispersion: 003 moldm™®  hexadecyltrimethyl-
ammonium chloride in D,O at 313 K. The functions P(Q) and

S(Q) are discussed in the text. (1 barn sterad !'=10"2% M?
sterad ~1).



Size Distributions Have Been Measured
for Helium Bubbles in Steel

The growth of He bubbles under neutron irradiation is a key factor limiting
the lifetime of steel for fusion reactor walls

— Simulate by bombarding steel with alpha particles
TEM is difficult to use because bubble are small
SANS shows that larger bubbles grow as the steel is
annealed, as a result of coalescence of small bubbles
and incorporation of individual He atoms

250° ; 825% Lt 975%
/ \,‘ 10} ’/'\\ 47\

: g |
A APERY A o i \ N\ ” | | .\
1 !I- ~ ant " w) - ~

RIAL . ) CRA ) T
SANS gives bubble volume (arbitrary units on the plots) as a function of bubble size
at different temperatures. Red shading is 80% confidence interval.
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Contrast & Contrast Matching

NEUTRONS
‘ ‘o.

D,0

RMA
DMa&

Froteins

Water

] Sugar
E—— File salts

I
"d.g-Fhos phatid ¥lcholine

I
- Fhosphatidvlcholine

Yo

D&

X-RAYS i

Protein

Water

16

1

14

12

12

111

Lipid

* Chart courtesy of Rex Hjelm

Both tubes contain borosilicate beads +

pyrex fibers + solvent. (A) solvent
refractive index matched to pyrex;. (B)
solvent index different from both beads

and fibers — scattering from fibers
dominates
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Isotopic Contrast for Neutrons

Hydrogen  Scattering Length Nickel Scattering Lengths
[sotope b (fm) Isotope b (fm)
'H -3.7409 (11) BN 15.0 (5)
‘D 6.674 (6) N 2.8 (1)
T 4.792 (27) o
Ni 7.60 (6)
*Ni -8.7 (2)

*Ni -0.38 (7)




Using Contrast Variation to Study Compound Particles

Examples include nucleosomes

L(Q=(p - p2) Fi (protein/DNA) and ribosomes
(poteins/RNA)
2
N =g -
. ](Q) _ A,O zQ.rd—> A zQ.rd—>
Iz(Q)=(pz—p|) F; V< 17!:6 n+ pzie b >
2 2 2 2
10) = 80 {(|R ) ) + 03 (|Fo(0) )+
in(QOR,,)
AP AR, F Q)] F (@) 122
ls(Q)—%l—)T @- (= 1@ B ORi»

= Z(Pl - Po)(Pz —Po) FiF, Sl_né%&)
~ Iz v

=0 atQ="R,,

Viewgraph from Charles Glinka (NIST)



Porod Scattering

Let us examine the behavior of ‘F(Q)‘2 (OR)" at large values of Q for a spherical
particle (1.e.Q >> 1/R where R 1s the sphere radius)

2
sin OR — OR.cosOR sin OR
[F(O) (OR)* =91 Q (Q%)3 Q ] (OR)" =9V* [ Qi ~ oS QR}
— 9V * cos” ORas Q —
=9)* /2 on average (the oscillations will be smeared out by resolution)
ov:  2ad

Thus ||F ‘ F( Q)‘

where A 1s the area of the sphere's surface.

2(0R)" Q'

This 1s Porod's law and holds as Q — oo for any particle shape provided the particle
surface1s smooth.
Another way to obtain it is to expand G(r) = 1 -ar + br* +..[witha = A/(27V)] at small 1

and to evaluate the form factor with this (Debye) form for the correlation function.



Scattering From Fractal Systems

- Fractals are systems that are “self-similar” under a change of scale l.e. R -> CR

« For a mass fractal the number of particles within a sphere of radius R is
proportional to RP where D is the fractal dimension

Thus
47R’*dR.G(R) = number of particles between distance R and R + dR = cR”"'dR
s G(R)=(c/4m)R"™

and S(0) = [dRe“*G(R) = %’ [dR.R.sin QR (¢ 47)R""

const
D

= %éfdx.xl)_z.sinx =

const
6-D,

For a surface fractal, one can prove that S(Q) « which reduces to the Porod

form for smooth surfaces of dimension 2.



Typical Intensity Plot for SANS From Disordered

In(T)

Systems

Zero Q intercept - gives particle volume 1f

t / concentration is known

«~ Quinier region (slope = —rg2/3 gives particle
“size”)
_ Mass fractal dimension (slope =-D)

‘\ . .
Porod region - gives surface area and

surface fractal dimension
{slope = -(6-D,)}

»
>

n(Q)



Surface Reflection Is Very Different From
Most Neutron and X-ray Scattering

We worked out the cross section by adding scattering from
different scattering centers
— We ignored double scattering processes because these are usually very weak

This approximation is called the Born Approximation

Below an angle of incidence called the critical angle, neutrons
and x-rays are perfectly reflected from a smooth surface

— This 1s NOT weak scattering and the Born Approximation is not applicable to

this case

Specular reflection is used:

— In neutron guides and x-ray mirrors

— In multilayer monochromators and neutron polarizers

— To probe surface and interface structure in layered systems



Various forms of small (glancing) angle neutron reflection

Specular reflectometry
Depth profiles
(nuclear and/or magnetic)

Off-specular (diffuse) scattering
In-plane correlated roughness

Magnetic stripes

Phase separation (polymers)

Glancing incidence diffraction
Ordering in liquid crystals

Atomic structures near surfaces
Interactions among nanodots

A~0.1-100nm

Viewgraph from M. R. Fitzsimmons



Only Neutrons With Very Low Velocities
Perpendicular to a Surface Are Reflected
kik,=n
The surface cannot change the neutron velocity parallel to the surface so:

k,cosa =kcosa'=kncosa' 1. n=cosa/cosa’

Neutrons obey Snell's Law

Since k> =k, —4mo  k’(cos’ a'+sin’ a') = k; (cos’ a +sin” @) — 4mo
ie. k’sin*a'=k sin®a-4mp or k’=k,_ -4mo

The critical value of £, for total external reflection is k,, = M
Forquartz k™" =2.05x107 A"

. critical
(2”/;]’) SIn acritical = kOZ =

ko
a. ... (°)=0.02A(A) for quartz \

Note: «a_....(°)=0.1A(A) for nickel N‘
k

How do we make a neutron bottle?




Reflection of Neutrons by a Smooth Surface: Fresnel s Law

k;r krr

Y1 = ayel YR = age’

continuity
of y &yatz=0=> 20 »
a,+a,=a, (1) tnz [ Ao/ - S

components perpendicular and parallel to the surface::
a,kcosa+aykcosa =a,nkcosa’  (2)

—(a, —ay)ksina = -a,nksina’ (3)

(1) & (2) =>Snell'sLaw: |cosa =ncosa’

(1) & (3) => (a, —ay) _,Sna _sma k..

(a, +ay) sma  sma  k,

soreflectanceis givenby | r=a,/a, =(k, -k, )/(k. +k,)




What do the Amplitudes ai and a; Look Like?

For reflection from a flat substrate, both ag and a; are complex when k, < 4mxp
|.e. below the critical edge. For a, = 1, we find:

0.5 F

—

0.025

0.01 0.015 0.02

»

Real (red) & imaginary (green) parts of ay
plotted against k,. The modulus of ay, is

plotted in blue. The critical edge is at

ko~ 0.009 A7. Note that the reflected wave 1s
completely out of phase with the incident wave
atk,=0

0.005 0.01 0.015 0.02 0.025

Real (red) and imaginary (green) parts
of a;. The modulus of a; 1s plotted in
blue. Note that a; tends to unity at
large values of k,, as one would expect
and that the transmitted intensity peaks
at the critical edge.



Penetration Depth

In the absence of absorption, the penetration depth becomes infinite at large
enough angles

Because k, is imaginary below the critical edge (recall that kZ2 = kgz —4mp),
the transmitted wave is evanescent

The penetration depth A=1/Im(x)  '"F—

1042—' At? 'S

Around the critical edge, one may

N

tune the penetration depth to probe = '"¢
different depths in the sample 102;__’J i

101 1 1 1 1 | 1 1 1 1 1 1 1 1 1 | 1 1 1 1 | 1




Measured Reflectivity

- We do not measure the reflectance, r, but the reflectivity, R given by:

R = # of neutrons reflected at Qz =r.r* S -

. Braslau et al.
# of incident neutrons PRL 54, 114 (1985)

Adssdd,

.

l.e., just as in diffraction, we lose phase
information

S
-~

e

1 -Ray Reflectivity

Fresnel Reflectivity1

T vrremy :

- Notice, also, that the measurement averages  *
the reflectivity over the surface of the sample: '’

-8 " 2 | N " 1

I.e. measured reflectivity depends on 0 015 030 o045

5(2) = % [dx[dyp(x..2)

YT

Measurement

Measured and Fresnel reflectivities
for water — difference is due to surface

roughness



Refractive Index: X-Rays & Neutrons

n2(f)=1+ N e’ . fE)

meg wo—wQ—Zi Mo W

5 2 _, _magnetic
n%(ﬂ =1 2mA V(r)+ part

Minus!! _ Absorption
Dispersion



Refractive Index: X-Rays

n(z) =1 2)‘72T re 0(2) - 14)‘7 p(z)

re0 (10%m™2) §(107%)  p(cm™) a.(°)

Vacuum 0 0 0
PS (CgHg), 9.5 3.5 4
PMMA (C;H;0,), 10.6 4.0 7
PVC (C,H;3Cl), 12.1 4.6 86
PBrS (CsH;Br), 13.2 5.0 97
Quartz (SiO,) 18.0-19.7 6.8-7.4 85
Silicon (Si) 20.0 7.6 141
Nickel (Ni) 72.6 274 407
Gold (Au) 131.5 49.6 4170

0 Q<Z> — <Q<$, Y Z>>5Uay

0.153
0.162
0.174
0.181
0.21-0.22
0.223
0.424
0.570

Electron Density
Profile !

E=8keV A=154A



When Does a “Rough” Surface Scatter Diffusely?

- Rayleigh criterion
\/{ _

(N :

path difference: Ar=2h sinb
phase difference: Ag = (4xh/)\) sin®
boundary between rough and smooth: Ag = n/2

that is h <A/(8sinB) for a smooth surface

§= ikl

whereg=4nhsin®/A=Q,




Surface Roughness

- Surface roughness causes diffuse \ /' 2

(non-specular) scattering and so S I ﬁ
reduces the magnitude of the | X
specular reflectivity |

-

1

« The way in which the specular reflection is damped depends on the length
scale of the roughness in the surface as well as on the magnitude and
distribution of roughness

Note that roughness

\
Ww | \¢‘ n (\Z) introduces a SLD
MW W ﬁ\ N profile averaged over

the sample surface

“sparkling sea”model  each piece of surface
-- specular from many scatters indepedently
facets -- Nevot Croce model

~
I

2k ki.o"
Rpe



Fresnel’ s Law for a Thin Film

r=(Kg,-K1,)/(K,+Ko,) is Fresnel’s law

Evaluate with p=4.10¢ A2 gives the
red curve with critical wavevector
given by kg, = (4np)'2

If we add a thin layer on top of the
substrate we get interference fringes &
the reflectance is given by:

i2k, 1
Fop 1€

r= 12k .t

1+ 7, r,e

and we measure the reflectivity R = r.r*

If the film has a higher scattering length density than the substrate we get the green
curve (if the film scattering is weaker than the substance, the green curve is below
the red one)

The fringe spacing at large k,, is ~ w/t (a 250 A film was used for the figure)



Multiple Layers — Parratt lteration (1954)

-  The same method of matching wavefunctions and derivatives at

interfaces can be used to obtain an expression for the reflectivity of
multiple layers

2ik. ..z
z,j+14j
Y - R; _ o2k Pt X e
ST L7, X e e
J Joj+1<% j+1
h kz,j _kz,j+1 vacuum 1
ZJ z,j+1 layer 2

Start iteration with :
RN+1=XN+1=O and Ti=1 layer  j

(i.e. nothing coming back from inside

substrate & unit amplitude incident wave)

layer N

layer N+1

Image from M. Tolan



Dealing with Complex Density Profiles

Any SLD depth profile can be
“chopped” into slices

The Parratt formalism allows the
reflectivity to be calculated

A thickness resolution of 1 A is
adequate — this corresponds to a
value of Q, where the reflectivity
has dropped below what
neutrons can normally measure

Computationally intensive!!

Slicing of Density Profile
6(2)%2(6J_6J_1>/ TN
) /

/ \
~ - )4 \
o /

-~ \
~N. /
— 7

~

W

Image from M. Tolan



Kinematic (Born) Approximation

We defined the scattering cross section in terms of an incident plane wave & a
weakly scattered spherical wave (called the Born Approximation)

This picture is not correct for surface reflection, except at large values of Q,

For large Q,, one may use the definition of the scattering cross section to
calculate R for a flat surface (in the Born Approximation) as follows:

number of neutrons retlected by a sampleof size L, L,

number of neutrons incident on sample (= PL, L sinx)

dk dk
_ a. _ 1. fdad§2= 1. fda il
LL sma LL smaJ dQ L.L smaJ dQ k,sna

becausek =k,cosa so dk_ =-k,smada.

From the definition of a cross section we get for a smooth substrate :

a0 _ fd? fdf'e’@“-f') =p’ 4n” LL 60O, so R=16a"p* /0’
dQ Q2 X"y X y z

z

[t1s easy toshow that this is the same as the Fresnel form at large Q,



Reflection by a Graded Interface

Repeating the bottom line of the previous viewgraph but keeping the z - dependence
6'722' Up(z)elQZZdZ — 6” dp(Z) elQZZdZ
O: o: vV d

equality follows after intergrating by parts.

where the second

of pgives: R =

If wereplace the prefactor by the Fresnel reflectivity R ., we get the right answer

for a smooth interface, as well as the correct form at large Q,

2
R — RFUdp(Z) eiQZZdZ

dz

This can be solved analytically for several convenient forms of do/dz such

as 1/cosh? (z). This approximate equation illustrates an important point :
reflectivity data cannot be inverted uniquely to obtain p(z), because
we generally lack important phase information. This means that models

refined to fit reflectivity data must have good physical justification.



Comparison of Neutron and X-Ray Reflectivity

h—PS

FD;Z\/F> \\\\\\\\\\\Ezfiifi:?rrs
\\\Sﬂ\k\&\\\\

=3 ; % 6
> 0.6 F X—roys -C—) 5
@ I 4
o 0.4 F v
° » = c 3 a &
o
- o = s 2 ]
g 02rg @ £ s T & =
i‘-; OO 51 ."Dl 1 1 _é 1 1 3 :—D)' O L .‘l:l 1 1 1 1 \1
@ .
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Neutrons often provide better contrast and don’ t damage samples
X-rays provide better Q resolution and higher Q values

Viewgraph courtesy of M. Tolan



The Goal of Reflectivity Measurements Is to Infer a
Density Profile Perpendicular to a Flat Interface

In general the results are not unique, but independent
knowledge of the system often makes them very reliable

Frequently, layer models are used to fit the data

Advantages of neutrons include:
— Contrast variation (using H and D, for example)
— Low absorption — probe buried interfaces, solid/liquid interfaces etc
— Non-destructive

— Sensitive to magnetism
— Thickness length scale 10 — 5000 A

Issues include
— Generally no unique solution for the SLD profile (use prior knowledge)

— Large samples (~10 cm?) with good scattering contrast are needed
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What do Specular and Off-specular scattering
measure?

e Specular reflectivity measures variations in scattering
density normal to surface (averaged over x,y plane)

e Off-specular scattering measures (x,y) variations of
scattering density, e€.g. due to roughness, magnetic
domains, etc.



Vector Diagram for Q in GISAXS

Incident
Beam




X-Ray Reflectometers

. Laboratory
("slit 3")
X-ray source / ﬁ . Setu p

rotating anode

synchrotron

Synchrotron
Setu p detfctor

slit4

HASYLAB: CEMO



Reflectivity from Liquids |
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We Have Seen How Neutron Scattering
Can Determine a Variety of Structures

X-Ray Neutron
0.20(1)nm

1.9(2 o-FEOOH | g-4.4p)

p=3.9@)

p=5.2@) p=8.64)

p=4.4(2) | 21(nm interface | s-5.94)
f 0.03(1)nm

p=3.1(3) Mgo B =6.2(5)

crystals

surfaces & interfaces disordered/fractals biomachines

but what happens when the atoms are moving?

Can we determine the directions and
Sieie exoXaVoNeNoKoN

SXCRONOX® OZQ o0 time-dependence of atomic motions?

O
8%0800 OOOOQ OOO;’OO Can well tell whether motions are periodic?

o@&@oo
0P 000000800&82 Ete.
OP PO DODs

oooooocﬁi’oooooo Y These are the types of questions answered
oooc@ooooogoo% bv i : P q :
. y inelastic neutron scattering



Neutrons can also gain or lose energy in the scattering process: this is

called inelastic scattering

(a) Elastic Scattering (k'= k) PR
Ne
sj"% ot
// 0
k' Q
_ Incident_ 2 R
Direction k

. Qe
sin 6 = '
O=2ksin6=4—ni"1—e

(b) Inelastic Scattering (k'# k)

kv

20

k

Neutron Loses Energy Neutron Gains Energy

(k'< k) (k'>k)

inelastic scattering

Scattering in which exchange of energy and
momentum between the incident neutron and
the sample causes both the direction and the
magnitude of the neutron’s wave vector to
change.

-



The Elastic & Inelastic Scattering Cross
Sections Have an Intuitive Similarity

The intensity of elastic, coherent neutron scattering is proportional to the
spatial Fourier Transform of the Pair Correlation Function, G(r) l.e. the
probability of finding a particle at position r if there is simultaneously a
particle at r=0

The intensity of inelastic coherent neutron scattering is proportional to
the space and time Fourier Transforms of the time-dependent pair
correlation function function, G(r,t) = probability of finding a particle at
position r at time t when there is a particle at r=0 and t=0.

For inelastic incoherent scattering, the intensity is proportional to the
space and time Fourier Transforms of the self-correlation function,
G.(r,t) l.e. the probability of finding a particle at position r at time t when
the same particle was at r=0 at t=0




Diffraction from a Frozen Wave

2
Z elQ.Vk

We know that for a linear chain of “atoms” along the x axis, S(Q,) is just a
series of delta function reciprocal lattice planes at Q, = n2x/a, where a is the
separation of atoms

~ 1
Recall that S(Q)=ﬁ O ’a’ o—0—0—0

What happens if we put a " frozen" wave in the chain of atoms so that the

atomic positions are x,, = pa +u cos kpa where p is an integer and u 1s small?
2 2

S(Q)= zeiQpaeiQucoskpa ~ zeiQpa(1+iQu[eikpa +e—ikpa])

p p

2
- EeiQpa +Z-Qu[ei(Q+k)pa _I_ei(Q—k)pa] | ‘ | | ‘ | | ‘ | | ‘ |

p
so thatin addition to the Bragg peaks we get weak satellitesat O = G+ k



What Happens if the Wave Moves?

If the wave moves through the chain, the scattering still occurs at
wavevectors G + k and G — k but now the scattering is inelastic

For quantized lattice vibrations, called phonons, the energy change of
the neutron is n» where w is the vibration frequency.

In a crystal, the vibration frequency at a given value of § (called the
phonon wavevector) is determined by interatomic forces. These
frequencies map out the so-called phonon dispersion curves.

mr[_""T*""“TA::‘T"""r—f"?vw“ ——re e T
1 . . gf 00T i 1
Different branches of the dispersion . ™
curves correspond to different types . / e
of motion i rmre
: /,/
7

phonon dlspersion in 36AI~ %5 "%z 5ﬁe CA Y G PR '”ofs%»o}t 0RO 'dfv"o%_o;a o4 0.5



A Phonon is a Quantized Lattice Vibration

Consider linear chain of particles of mass M coupled by springs.
Force on n’ th particle is

El = aOun + 0{1 (un—l + Z’tn+1) + a2 (un—2 + un+2) +...

o\ v'\\
First neighbor force constant displacements

Equation of motion is £, =M,
. 4 ]
. L _ i(gna—at) . 2 220,
Solution is: u, () =4 with w, Y; E a, sin (2vqa)

q=0,¢2—ﬂ,i4—”,......iﬁz—” @
L L 2 L
P I:'- -..I |/.--"| £ I.'---lll |/.--"| o~ L
o |,__.__:| |:_\| R I:___EI |:_/| : u
’ ’ _T_

sl al— /_'

Phonon Dispersion Relation:
Measurable by inelastic neutron scattering

qa/2m
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Transverse Optic and Acoustic Phonons
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General Expression for d=oc/dQ2dE

Squires (egn 2.59) derives the following expression:

o0

: Z,; ;;j _ ;Z zjlrh Z b, f<e_@,1§,(0)e@.ie’,.(t>> o g

—0

where Ei (¢) 1sa Heisenberg operator 1.¢.

bR - OB . L
e QR _ GiHIh =IO0K; o-iHtIh where H is the Hamiltonian of the scatterer

and < > denotes a thermal average over the possible states, A, of the

scatterer -- 1.e. for any operator, <A> = Z D </1‘A‘/1>

Note that, because of the operators and the average over the states of
the system, this expression is not easy to evaluate in the general case

Note also that the exponential operators do not commute — each
contains H and therefore p, and p and R do not commute.



Correlation Functions

~ 1 1 _iO'F —iQ".R..(0) iO'R.(1)\ 1.3
Suppose we define : G(7,¢) = el <e R0 1OV, >d '
pp (1) o N [ ; 0

and S(O,w) = L f G(#,1)e " di.dt  then we find
27th

dQdE' o
Squires (eqn 4.14 to 4.17) shows that

2 ' -
( d"o ) = b? % NS(Q,w) provided there 1s only one type of atom
coh

G(7,t) = 1 S{F'=R .(0)YO{F'+F - R (¢)} )dF"
v S0k o)

Note again that the operators do not commute. If we ignore this fact, we
can do the integration and obtain

G sot (Fa0) = S (817 = R (04 R, (0)})

JsJ'




Correlation Functions (cont d)

1

Gt (F21) =~ > (317 = R, (1) + R, (0)})

We expressed the coherent scattering cross section in terms of G(r,t)

If we use the classical variant given above, there is a clear physical
meaning — G(r,t) is the probability that if particle j is at the origin at
time zero, particle j will be at position r at time t.

We can do the same thing with the incoherent scattering and express
it in terms of a self-correlation function whose classical version is

Gl e (7o1) = (87 = R (1) + R,(0)})
This says that the incoherent scattering is related to the probability
that if a particle is at the origin at time zero, the same particle will be
at position r at time t.



Inelastic Neutron Scattering Measures Atomic Motions

In term of the pair correlation functions, one finds

d’o k'
oy = bfoh ;NS (O, w) (h/27)Q & (h/2m)w are the momentum &
' coh energy transferred to the neutron during the
4o 2 . scattering process
= bzzzc R NSs (Q9 Cl))
dQ.dE . k
where

) = L 2 i(Q.F-ar) go: 2 _ L - i(0.F-t) 3=
S(0,w) = 2ﬂhffG(r,t)e drdt and S (Q,w) = 2”hfst(r,t)e drdt

* Inelastic coherent scattering measures correlated motions of different
atoms

* Inelastic incoherent scattering measures self-correlations e.g. diffusion



Much of the Scientific Impact of Neutron Scattering Has

the Measurement of Inelastic Scattering
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Energy & Wavevector Transfers accessible to Neutron Scattering



The Accessible Energy and Wavevector
Transfers Are Limited by Conservation Laws

* Neutron cannot lose more than its initial kinetic energy &
momentum must be conserved
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Elastic Scattering as the t

Elastic scattering occurs at w = 0. Since it involves a d(w), only the part of
G(r,t) which is constant contributes

G(r,t) decays as t increases, so the constant part is G(r,»)

Since we only need the part of the correlation that is time-independent,
we can write (noting that the correlation between the positions of j and j’

are independent of t as t-> x)

- 1 oy | D _’O: - D |
G(7,1) = Nz f<5{r ~R,(0)}8{F"+7 = R (1) })dF
" Note — no truly

1 . . . .
G(r,®)=— O{r'-R I O{r'+r — R .} )dr' elastic scattering
N Ef< ] >< ] > for a liquid

- [P p )
where p(7") 1s the particle density operator at any time

G(r,0) 1s called the Patterson function




The Static Approximation

Earlier we had :

2 1 L
a0 =b, LV f G(7,1)e" "~ dr dt
dQdE'| ko 2ah

~ 1 1 . _5- ~i0.B.(0) i0.R.(1)
where G(r.,t) = — e <e Ok (D) I >
-0 27y’ Nf 2

In diffraction measurements, we measure scattered neutron intensity in a
particular direction, independent of the change in neutron energy —i.e. we
integrate the cross section over E = hw/2mw. This is the Static Approximation.

1
Because hé(t)=ﬂ_£e d(hw)

the integral over w picks out the t = 0 value of G to give

static

doy o _p N [G(F.0)e 7" dF dt.deo
dQ coh

= b

coh

N fG(f,O)e@fdf



Comparison of Elastic Scattering and the
Static Approximation

d()' static .
— =b>, N[G(¥,0)e“ dr
(dg )wh coh f ( )

elastic

dO' - iO.F 71—
S = bczothG(r,OO)e °r dr
dQ coh
These are not the same, except in an (unreal) system with no motion

The elastic scattering cross section gives the true elastic scattering that
results when the positions of different atoms are correlated for all
times, as they are in a crystalline solid, even when phonons are
present

The static approximation, as its name suggests, gives the scattering for
a system that is frozen in time



The Intermediate Scattering Function

Another function that is often useful is the Intermediate Scattering
Function defined as

1(0,1) = fG(f,t)e@-?df
This is the quantity measured with Neutron Spin Echo (NSE)

It is not possible to derive exact expressions for |, G or S except for
simple models. It is therefore useful to know the various analytical
properties of these functions to ensure that models preserve them.
Squires shows:

1(0,1) = I*(Q,-1); 1(0,1) = I(-0,~t + i/ k,T)
G(F,t) = G*(-F,-1); G(#.t) = G(-F,-t +ih | k,T)
S(0,w) = $*(0,w); S(0,w) = """ S(-0,-w)

There are also various sum & moment rules on these quantities that
are sometimes useful (see Squires for details)



Magnetic Properties of the Neutron

The neutron has a magnetic moment of -9.649 x 1027 JT-
Hy = —YUyO
where py = %mp 1s the nuclear magneton,
m, = proton mass, e = proton chargeand y =1.913
o 1is the Pauli spin operator for the neutron. Itseignevalues are + 1

Note that the neutron’ s spin and magnetic moment are antiparallel
Because of its magnetic moment, the neutron feels a potential given by:

V,,(F) = =14, B(F) where B(F) = pouH (F) = o[ H(F) + M(¥)]

Thus the neutron senses the distribution of magnetization in a material

Homework problems: What is the Zeeman energy in meV of a neutron in a 1 Tesla field?
At what temperature is the Boltzmann energy equal to this Zeeman energy? What is the
effective scattering length of a “point” magnetic moment of one Bohr magneton?



Magnetic Scattering of the Neutron

For nuclear scattering, the matrix element that appears in the expression
for the scattering cross section is: Ebje’Q'Rf
7

The equivalent matrix element for magnetic scattering is:

1 -~ 4 A .
5 o.M (Q) where g = ;—h is the Bohr magneton (9.27 x10™** JT™)
Up

e

70

2
and 7y = Ho € s classical radius of the electron (2.818 x10° nm)

4 m,

Here ML (Q) Is the component of the Fourier transform of the
magnetization that is perpendicular to the scattering vector O . This
form arises directly from the dipolar nature of the magnetic interaction.

Unlike the neutron-nucleus interaction, the magnetic interaction of the
neutron with a scattering system specifically depends on neutron spin



Derivation

The B field at distance R from a magnetic moment M is 20VA

4T

MAR o
’ER] - Mo GA(NIAv(/R))
R 4

[c'e} 1 5
Since f— exp(i§.R)dq = 2”quf€Xp(zqR cos0)d(cosd) = 4”fsm(qR) ;= 2

R

(AR
R3

1 1

-~ —VA(MAV{expzq R})dq
q

VA

—

But MAV{expig.R} = iMAGexpig.R and VAMAG expig.R = iGAMAG expiG.R

SO VA

MAR 1 A1 . _ 1 .- _
= gA\MAqg fexpig.R \dg = —— | M, (g){expig.R}dqg
R3] szqzq( Q){ piq.R}dq sz 1 (g){expiq.R}dq



The Magnetic Scattering Cross Section

Development of the magnetic scattering cross section follows the same
formalism as for the nuclear cross section, with nuclear matrix element
replaced by the magnetic interaction matrix element given above

Need to keep the explicit dependence on neutron spin (or average over
neutron spin states for an unpolarized neutron beam).

— Magnetic scattering may cause a change in the neutron’ s spin state

General expressions tend to be complicated, so specific expressions are
obtained for various contributions to sample magnetization e.g. unpaired
electron spins

The form of the magnetic cross section implies that neutrons are only
sensitive to components of the magnetization that are perpendicular to Q.



Scattering by lons with Unpaired Electrons

Including only magnetization due to unpaired electron spins and assuming
an unpolarized incident neutron beam:

d’c  (m)’ k'
dQ.dE 2ah  k

E (505/3’ - QAaQA/j)’; F;‘(Q)Fd (Q)
a,f 'd'

X} dt<eXp {-H0.Ry1y(0)}exp {iQ. Ry t)}>-<SIO'[d'(O)SZ§ (l‘)>€_m

where F,(Q) is the Fourier transform of the electron spin density around
atom d, often called the atomic form factor; S¢ is the o component of the
electron spin and /,d labels an atom din unit cell /

This expression can be manipulated to give the scattering cross sections
for elastic magnetic scattering inelastic magnetic scattering and magneto-
vibrational scattering



What Happens to a Neutron' s Spin When the
Neutron is Scattered?

- The cross section for magnetic scattering that takes the neutron spin state
from o->0" and the scattering system from A->\" is

(o

2 !
_ (ﬂ) 3
oA—o'A! ZMB k

+ One can show (see Squires) that if |u),

d’o
dQ.dE

5.0, |02 8(E; - EA'+hw)

v>are the neutron spin eigenstates:

(G [u)= M. (GM |y =M s (Vo |u)= M +iM ;s (ol V)= M, —iM

so, sample magnetization parallel to the neutron’ s magnetic moment (z)
does not change the neutron spin, whereas perpendicular components of
magnetization ‘flip” the neutron’s spin

Homework: show that for a paramagnet (where <SiaS]/'3> = %%éaﬁS(S +1) for spins i and j)
— If z 1s parallel to Q, the scattering is entirely spin flip
— If z is perpendicular to Q, half the scattering is spin flip



Inelastic Magnetic Scattering of Neutrons

 In the simplest case, atomic spins in a ferromagnet
precess about the direction of mean magnetization

—

H=3J(I-1S.S =H +3hobb
; / \+ > ho \

exchange coupling

spin waves (magnons)
ground state energy
with
hw =25(J -J )  where J =2J(Z)e”” L
a a ? Fluctuating spin is

perpendicular to mean spin

ho, = Dq’ is the dispersionrelation for a ferromagnet  direction /

TYYYYTYYYYYY

Spin wave animation courtesy of A. Zheludev (ORNL)



Instrumental Resolution

« Uncertainties in the neutron
wavelength & direction of travel
imply that Q and E can only be
defined with a certain precision

When the box-like resolution
volumes in the figure are convolved,
the overall resolution width is the
quadrature sum of the box sizes.
Small “boxes” give good resolution.

- The total signal in a scattering
experiment is proportional to the product of the “box” sizes

The better the resolution, the lower the count rate



Examples of Specialization of Spectrometers:
Optimizing the Signal for the Science

- Small angle scattering [Q = 4 sinB/A; (§Q/Q)2 = (3A/A)2 + (cotd dB)?]
— Small diffraction angles to observe large objects => long (20 m) instrument

— poor monochromatization (dA/A~ 10%) sufficient to match obtainable angular
resolution (1 cm? pixels on 1 m? detector at 10 m => 86 ~ 103 at 6 ~ 10-2))

- Back scalttering [6=n/2; A = 2 d sin 0; /A = cot 0 +...]
— very good energy resolution (~neV) => perfect crystal analyzer at 0 ~ 7/2

— poor Q resolution => analyzer crystal is very large (several m?)
o DRSS AMNEF e’

"~_‘



Neutron Scattering Instrumentation is Designed
to Compromise between Intensity & Resolution

] —;‘mv2 / kT

Maxwellian distribution of neutron velocities  P(v) ~ ——e
T

Liouville’ s theorem — the (6-dimensional) phase space density of non-
interacting particles cannot be increased by conservative forces

— Brighter sources => colder moderators or non-equilibrium neutron production

—»>

We can only increase scattered intensity at a given (Q,E) by increasing
the phase space volume

—»>

Design instruments to have good resolution in the direction of (Q,E)
space that is important for the science

Neutron optics & instrumentation is designed to:
— Maintain neutron brightness R
— Provide good resolution in a chosen direction in (Q,E) space
— Simultaneously measure as many resolution elements [1.e. (Q,E) points] as is useful



General References

Introduction to the Theory of Thermal Neutron Scattering
by G. L. Squires

Neutron Scattering: A Non-Destructive Microscope for Seeing Inside Matter
by Roger Pynn
Available on-line at http://www.springerlink.com/content/978-0-387-09415-1

Elements of Modern X-Ray Physics
by Jens Als-Nielsen and Des McMorrow

John Wiley and Sons: [ISBN 0471498580

Elementary Scattering Theory For X-ray and Neutron Users
by D.S. Sivia
Oxford University Press

International Neutron Scattering Instrumentation School (INSIS)
http://neutrons.ornl.gov/conf/insis2012/



SANS References

A website of SANS tutorials

— www.ncnr.nist.gov/programs/sans/tutorials

SANS data can be simulated for various particle shapes using the
programs available at:

— www.ncnr.nist.gov/resources/simulator.html

To choose instrument parameters for a SANS experiment at NIST go to:

— www.ncnr.nist.gov/resources/sansplan.html



END



